Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Lancet Microbe ; 4(10): e830-e836, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640039

RESUMO

A systematic approach is required for the development of an evidence-based risk assessment tool to robustly estimate the risks and implications of SARS-CoV-2 variants. We conducted a survey among experts involved in technical advisory roles for WHO to capture their assessment of the robustness of different study types that provide evidence for potential changes in transmissibility, antigenicity, virulence, treatability, and detectability of SARS-CoV-2 variants. The views of 62 experts indicated that studies could be grouped on the basis of robustness and reliability for the different risk indicators mentioned. Several study types that experts scored as providing reliable evidence and that can be performed in a timely manner were identified. Although experts from different technical areas had varying responses, there was agreement on the highest and lowest scoring study types. These findings can help to prioritise, harmonise, and optimise study designs for the further development of a systematic, evidence-based, SARS-CoV-2 variant risk assessment tool.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Medição de Risco , Encaminhamento e Consulta
2.
Microbiol Spectr ; 11(3): e0510122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158743

RESUMO

The onset of the coronavirus disease 2019 (COVID-19) pandemic resulted in hundreds of in vitro diagnostic devices (IVDs) coming to market, facilitated by regulatory authorities allowing "emergency use" without a comprehensive evaluation of performance. The World Health Organization (WHO) released target product profiles (TPPs) specifying acceptable performance characteristics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) assay devices. We evaluated 26 rapid diagnostic tests and 9 enzyme immunoassays (EIAs) for anti-SARS-CoV-2, suitable for use in low- and middle-income countries (LMICs), against these TPPs and other performance characteristics. The sensitivity and specificity ranged from 60.1 to 100% and 56.0 to 100%, respectively. Five of 35 test kits reported no false reactivity for 55 samples with potentially cross-reacting substances. Six test kits reported no false reactivity for 35 samples containing interfering substances, and only one test reported no false reactivity with samples positive for other coronaviruses (not SARS-CoV-2). This study demonstrates that a comprehensive evaluation of the performance of test kits against defined specifications is essential for the selection of test kits, especially in a pandemic setting. IMPORTANCE The markets have been flooded with hundreds of SARS-CoV-2 serology tests, and although there are many published reports on their performance, comparative reports are far fewer and tend to be limited to only a few tests. In this report, we comparatively assessed 35 rapid diagnostic tests or microtiter plate enzyme immunoassays (EIAs) using a large set of samples from individuals with a history of mild to moderate COVID-19, commensurate with the target population for serosurveillance, which included serum samples from individuals previously infected, at undetermined time periods, with other seasonal human coronaviruses, Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-1. The significant heterogeneity in their performances, with only a few tests meeting WHO target product profile performance requirements, highlights the importance of independent comparative assessments to inform the use and procurement of these tests for both diagnostics and epidemiological investigations.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Técnicas de Laboratório Clínico/métodos , Teste para COVID-19 , Anticorpos Antivirais
3.
Nat Genet ; 55(1): 26-33, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36624344

RESUMO

The first step in SARS-CoV-2 genomic surveillance is testing to identify people who are infected. However, global testing rates are falling as we emerge from the acute health emergency and remain low in many low- and middle-income countries (mean = 27 tests per 100,000 people per day). We simulated COVID-19 epidemics in a prototypical low- and middle-income country to investigate how testing rates, sampling strategies and sequencing proportions jointly impact surveillance outcomes, and showed that low testing rates and spatiotemporal biases delay time to detection of new variants by weeks to months and can lead to unreliable estimates of variant prevalence, even when the proportion of samples sequenced is increased. Accordingly, investments in wider access to diagnostics to support testing rates of approximately 100 tests per 100,000 people per day could enable more timely detection of new variants and reliable estimates of variant prevalence. The performance of global SARS-CoV-2 genomic surveillance programs is fundamentally limited by access to diagnostic testing.


Assuntos
COVID-19 , Epidemias , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/genética , Genômica , Técnicas e Procedimentos Diagnósticos , Teste para COVID-19
4.
Nat Commun ; 13(1): 7003, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385137

RESUMO

Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Genoma Viral/genética , COVID-19/epidemiologia , Pandemias , Genômica
5.
medRxiv ; 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35664998

RESUMO

The first step in SARS-CoV-2 genomic surveillance is testing to identify infected people. However, global testing rates are falling as we emerge from the acute health emergency and remain low in many low- and middle-income countries (LMICs) (mean = 27 tests/100,000 people/day). We simulated COVID-19 epidemics in a prototypical LMIC to investigate how testing rates, sampling strategies, and sequencing proportions jointly impact surveillance outcomes and showed that low testing rates and spatiotemporal biases delay time-to-detection of new variants by weeks-to-months and can lead to unreliable estimates of variant prevalence even when the proportion of samples sequenced is increased. Accordingly, investments in wider access to diagnostics to support testing rates of ~100 tests/100,000 people/day could enable more timely detection of new variants and reliable estimates of variant prevalence. The performance of global SARS-CoV-2 genomic surveillance programs is fundamentally limited by access to diagnostic testing.

6.
medRxiv ; 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34462754

RESUMO

Genomic sequencing provides critical information to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments and vaccines, and guide public health responses. To investigate the spatiotemporal heterogeneity in the global SARS-CoV-2 genomic surveillance, we estimated the impact of sequencing intensity and turnaround times (TAT) on variant detection in 167 countries. Most countries submit genomes >21 days after sample collection, and 77% of low and middle income countries sequenced <0.5% of their cases. We found that sequencing at least 0.5% of the cases, with a TAT <21 days, could be a benchmark for SARS-CoV-2 genomic surveillance efforts. Socioeconomic inequalities substantially impact our ability to quickly detect SARS-CoV-2 variants, and undermine the global pandemic preparedness.

8.
Diagn Microbiol Infect Dis ; 97(2): 115026, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32173144

RESUMO

The objective was to evaluate the sensitivity and specificity of a novel prototype test, TB REaD™, a reporter enzyme fluorescence-based assay, for pulmonary tuberculosis and to determine the optimal threshold for test positivity. This blinded, prospective study enrolled 250 patients, of which 23.2% were Mycobacterium tuberculosis complex (MTB) culture-positive. At the manufacturer-set threshold, sensitivity of the assay was 93.1% (95% confidence interval [CI] 83.3-98.1) and specificity was 8.9% (95% CI 5.2-13.8). The highest accuracy was seen at a higher threshold: sensitivity 58.6% (95% CI 44.9-71.4), specificity 59.4% (95% CI 52.1%-66.4%), with sensitivity by smear status being 40.0% (95% CI 21.1-61.3) for smear-negative and 72.7% (95% CI 54.5-86.7) for smear-positive. This study demonstrated limited accuracy of the TB REaD™ prototype for detection of pulmonary TB. Further improvements are necessary, potentially exploring probes that are more specific to MTB.


Assuntos
Ensaios Enzimáticos Clínicos/métodos , Mycobacterium tuberculosis/enzimologia , Escarro/microbiologia , Tuberculose Pulmonar/diagnóstico , beta-Lactamases/análise , Adulto , Biomarcadores/análise , Feminino , Fluorescência , Humanos , Masculino , Pessoa de Meia-Idade , Sistemas Automatizados de Assistência Junto ao Leito , Estudos Prospectivos , Kit de Reagentes para Diagnóstico , Sensibilidade e Especificidade , beta-Lactamases/metabolismo
9.
Int J Infect Dis ; 68: 44-49, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29410366

RESUMO

OBJECTIVE: To evaluate the diagnostic performance of TB-LAMP, a manual molecular tuberculosis (TB) detection method, and provide comparison to the Xpert MTB/RIF assay. METHODS: In a large multicentre study, two sputum samples were collected from participants with TB symptoms in reference laboratories in Peru, South Africa, Brazil, and Vietnam. Each sample was tested with TB-LAMP. The reference standard consisted of four direct smears, four cultures, and clinical and radiological findings. Individuals negative on conventional tests were followed up after 8 weeks. The Xpert MTB/RIF assay was performed on fresh or frozen samples as a molecular test comparison. RESULTS: A total of 1036 adults with suspected TB were enrolled. Among 375 culture-confirmed TB cases with 750 sputum samples, TB-LAMP detected 75.6% (95% confidence interval (CI) 71.8-79.4%), including 97.9% (95% CI 96.4-99.4%) of smear-positive TB samples and 46.6% (95% CI 40.6-52.7%) of smear-negative TB samples. Specificity in 477 culture-negative participants not treated for TB (954 sputum samples) was 98.7% (95% CI 97.9-99.6%). TB-LAMP test results were indeterminate in 0.3% of cases. CONCLUSIONS: TB-LAMP detects nearly all smear-positive and half of smear-negative TB cases and has a high specificity when performed in reference laboratories. Performance was similar to the Xpert MTB/RIF assay.


Assuntos
Teste Tuberculínico , Tuberculose/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Peru , Sensibilidade e Especificidade , África do Sul , Escarro/microbiologia , População Urbana , Vietnã , Adulto Jovem
10.
Pediatr Infect Dis J ; 37(1): 1-9, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28719497

RESUMO

BACKGROUND: Identification of the Mycobacterium tuberculosis immunoproteome and antigens associated with serologic responses in adults has renewed interest in developing a serologic test for childhood tuberculosis (TB). We investigated IgG antibody responses against M. tuberculosis antigens in children with well-characterized TB. METHODS: We studied archived sera obtained from hospitalized children with suspected pulmonary TB, and classified as having confirmed TB (culture-confirmed), unlikely TB (clinical improvement without TB treatment), or unconfirmed TB (all others). A multiplexed bead-based assay for IgG antibodies against 119 M. tuberculosis antigens was developed, validated and used to test sera. The area under the curves (AUCs) of the empiric receiver-operator characteristic curves were generated as measures of predictive ability. A cross-validated generalized linear model was used to select the most predictive combinations of antigens. RESULTS: For the confirmed TB versus unlikely TB comparison, the maximal single antigen AUC was 0.63, corresponding to sensitivity 0.60 and specificity 0.60. Older (age: 60+ months old) children's responses were better predictive of TB status than younger (age: 12-59 months old) children's, with a maximal single antigen AUC of -0.76. For the confirmed TB versus unlikely TB groups, the most predictive combinations of antigens assigned TB risk probabilities of 0.33 and 0.33, respectively, when all ages were considered, and 0.57 (interquartile range: 0.48-0.64) and 0.35 (interquartile range: 0.32-0.40) when only older children were considered. CONCLUSION: An antigen-based IgG test is unlikely to meet the performance characteristics required of a TB detection test applicable to all age groups.


Assuntos
Anticorpos Antibacterianos/sangue , Imunoglobulina G/sangue , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar , Adolescente , Biomarcadores/sangue , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , África do Sul/epidemiologia , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/imunologia
11.
Lancet ; 390(10108): 2211-2214, 2017 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-28577861

RESUMO

Diagnostics are crucial in mitigating the effect of disease outbreaks. Because diagnostic development and validation are time consuming, they should be carried out in anticipation of epidemics rather than in response to them. The diagnostic response to the 2014-15 Ebola epidemic, although ultimately effective, was slow and expensive. If a focused mechanism had existed with the technical and financial resources to drive its development ahead of the outbreak, point-of-care Ebola tests supporting a less costly and more mobile response could have been available early on in the diagnosis process. A new partnering model could drive rapid development of tests and surveillance strategies for novel pathogens that emerge in future outbreaks. We look at lessons learned from the Ebola outbreak and propose specific solutions to improve the speed of new assay development and ensure their effective deployment.


Assuntos
Defesa Civil/organização & administração , Controle de Doenças Transmissíveis/métodos , Surtos de Doenças , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/epidemiologia , Erradicação de Doenças/métodos , Feminino , Saúde Global , Doença pelo Vírus Ebola/terapia , Humanos , Masculino , Testes Imediatos , Desenvolvimento de Programas , Avaliação de Programas e Projetos de Saúde , Organização Mundial da Saúde
12.
Clin Infect Dis ; 64(7): 947-955, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362937

RESUMO

BACKGROUND: Development of rapid diagnostic tests for tuberculosis is a global priority. A whole proteome screen identified Mycobacterium tuberculosis antigens associated with serological responses in tuberculosis patients. We used World Health Organization (WHO) target product profile (TPP) criteria for a detection test and triage test to evaluate these antigens. METHODS: Consecutive patients presenting to microscopy centers and district hospitals in Peru and to outpatient clinics at a tuberculosis reference center in Vietnam were recruited. We tested blood samples from 755 HIV-uninfected adults with presumptive pulmonary tuberculosis to measure IgG antibody responses to 57 M. tuberculosis antigens using a field-based multiplexed serological assay and a 132-antigen bead-based reference assay. We evaluated single antigen performance and models of all possible 3-antigen combinations and multiantigen combinations. RESULTS: Three-antigen and multiantigen models performed similarly and were superior to single antigens. With specificity set at 90% for a detection test, the best sensitivity of a 3-antigen model was 35% (95% confidence interval [CI], 31-40). With sensitivity set at 85% for a triage test, the specificity of the best 3-antigen model was 34% (95% CI, 29-40). The reference assay also did not meet study targets. Antigen performance differed significantly between the study sites for 7/22 of the best-performing antigens. CONCLUSIONS: Although M. tuberculosis antigens were recognized by the IgG response during tuberculosis, no single antigen or multiantigen set performance approached WHO TPP criteria for clinical utility among HIV-uninfected adults with presumed tuberculosis in high-volume, urban settings in tuberculosis-endemic countries.


Assuntos
Antígenos de Bactérias/imunologia , Imunoglobulina G/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/imunologia , Adolescente , Adulto , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Peru , Reprodutibilidade dos Testes , Testes Sorológicos/métodos , Testes Sorológicos/normas , Tuberculose Pulmonar/epidemiologia , Adulto Jovem
13.
PLoS One ; 10(12): e0144088, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26633829

RESUMO

Globally, tuberculosis is slowly declining each year and it is estimated that 37 million lives were saved between 2000 and 2013 through effective diagnosis and treatment. Currently, diagnosis relies on demonstration of the bacteria, Mycobacterium tuberculosis (Mtb), in clinical specimens by serial sputum microscopy, culture and molecular testing. Commercial immunoassay lateral flow kits developed to detect Mtb lipoglycan lipoarabinomannan (LAM) in urine as a marker of active TB exhibit poor sensitivity, especially in immunocompetent individuals, perhaps due to low abundance of the analyte. Our present study was designed to develop methods to validate the presence of LAM in a quantitative fashion in human urine samples obtained from culture-confirmed TB patients. Herein we describe, a consolidated approach for isolating LAM from the urine and quantifying D-arabinose as a proxy for LAM, using Gas Chromatography/Mass Spectrometry. 298 urine samples obtained from a repository were rigorously analyzed and shown to contain varying amounts of LAM-equivalent ranging between ~10-40 ng/mL. To further substantiate that D-arabinose detected in the samples originated from LAM, tuberculostearic acid, the unique 10-methyloctadecanoic acid present at the phosphatidylinositol end of LAM was also analyzed in a set of samples and found to be present confirming that the D-arabinose was indeed derived from LAM. Among the 144 samples from culture-negative TB suspects, 30 showed presence of D-arabinose suggesting another source of the analyte, such as disseminated TB or from non-tuberculosis mycobacterium. Our work validates that LAM is present in the urine samples of culture-positive patients in small but readily detectable amounts. The study further substantiates LAM in urine as a powerful biomarker for active tuberculosis.


Assuntos
Arabinose/urina , Lipopolissacarídeos/urina , Tuberculose/diagnóstico , Ensaio de Imunoadsorção Enzimática , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Mycobacterium tuberculosis/isolamento & purificação , Sensibilidade e Especificidade , Tuberculose/urina
14.
Expert Rev Mol Diagn ; 15(10): 1231-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26394699

RESUMO

The Ebola outbreak that took hold in West Africa in 2014 outran the epidemic response capacity of many organizations. Five months after the epidemic was first declared, there were still only two laboratories in West Africa with the capacity to confirm Ebola virus infection. In the summer of 2014, before the first case of imported Ebola occurred in the USA, the US FDA announced it would issue Emergency Use Authorizations for Ebola virus in vitro diagnostics to speed their availability. Between October 2014 and March 2015, the FDA issued Emergency Use Authorizations for nine diagnostic products. The actions of the FDA not only allowed nationwide deployment of Ebola virus testing capacity in the USA but also established an attractive regulatory goalpost for companies developing assays for use in West Africa. Here, we comment on the diagnostic assays for which the FDA has issued emergency authorizations and their fitness for purpose.


Assuntos
Surtos de Doenças , Doença pelo Vírus Ebola/diagnóstico , África Ocidental/epidemiologia , Aprovação de Teste para Diagnóstico , Doença pelo Vírus Ebola/epidemiologia , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos , United States Food and Drug Administration
15.
Lancet ; 386(9996): 867-74, 2015 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-26119838

RESUMO

BACKGROUND: At present, diagnosis of Ebola virus disease requires transport of venepuncture blood to field biocontainment laboratories for testing by real-time RT-PCR, resulting in delays that complicate patient care and infection control efforts. Therefore, an urgent need exists for a point-of-care rapid diagnostic test for this disease. In this Article, we report the results of a field validation of the Corgenix ReEBOV Antigen Rapid Test kit. METHODS: We performed the rapid diagnostic test on fingerstick blood samples from 106 individuals with suspected Ebola virus disease presenting at two clinical centres in Sierra Leone. Adults and children who were able to provide verbal consent or assent were included; we excluded patients with haemodynamic instability and those who were unable to cooperate with fingerstick or venous blood draw. Two independent readers scored each rapid diagnostic test, with any disagreements resolved by a third. We compared point-of-care rapid diagnostic test results with clinical real-time RT-PCR results (RealStar Filovirus Screen RT-PCR kit 1·0; altona Diagnostics GmbH, Hamburg, Germany) for venepuncture plasma samples tested in a Public Health England field reference laboratory (Port Loko, Sierra Leone). Separately, we performed the rapid diagnostic test (on whole blood) and real-time RT-PCR (on plasma) on 284 specimens in the reference laboratory, which were submitted to the laboratory for testing from many clinical sites in Sierra Leone, including our two clinical centres. FINDINGS: In point-of-care testing, all 28 patients who tested positive for Ebola virus disease by RT-PCR were also positive by fingerstick rapid diagnostic test (sensitivity 100% [95% CI 87·7-100]), and 71 of 77 patients who tested negative by RT-PCR were also negative by the rapid diagnostic test (specificity 92·2% [95% CI 83·8-97·1]). In laboratory testing, all 45 specimens that tested positive by RT-PCR were also positive by the rapid diagnostic test (sensitivity 100% [95% CI 92·1-100]), and 214 of 232 specimens that tested negative by RT-PCR were also negative by the rapid diagnostic test (specificity 92·2% [88·0-95·3]). The two independent readers agreed about 95·2% of point-of-care and 98·6% of reference laboratory rapid diagnostic test results. Cycle threshold values ranged from 15·9 to 26·3 (mean 22·6 [SD 2·6]) for the PCR-positive point-of-care cohort and from 17·5 to 26·3 (mean 21·5 [2·7]) for the reference laboratory cohort. Six of 16 banked plasma samples from rapid diagnostic test-positive and altona-negative patients were positive by an alternative real-time RT-PCR assay (the Trombley assay); three (17%) of 18 samples from individuals who were negative by both the rapid diagnostic test and altona test were also positive by Trombley. INTERPRETATION: The ReEBOV rapid diagnostic test had 100% sensitivity and 92% specificity in both point-of-care and reference laboratory testing in this population (maximum cycle threshold 26·3). With two independent readers, the test detected all patients who were positive for Ebola virus by altona real-time RT-PCR; however, this benchmark itself had imperfect sensitivity. FUNDING: Abundance Foundation.


Assuntos
Antígenos Virais/sangue , Ebolavirus/imunologia , Doença pelo Vírus Ebola/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Kit de Reagentes para Diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Ebolavirus/genética , Ebolavirus/isolamento & purificação , Feminino , Humanos , Imunoensaio/métodos , Lactente , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , RNA Viral/sangue , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
J Infect Dis ; 211 Suppl 2: S50-7, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25765106

RESUMO

Tuberculosis remains a major global public health challenge. Although incidence is decreasing, the proportion of drug-resistant cases is increasing. Technical and operational complexities prevent Mycobacterium tuberculosis drug susceptibility phenotyping in the vast majority of new and retreatment cases. The advent of molecular technologies provides an opportunity to obtain results rapidly as compared to phenotypic culture. However, correlations between genetic mutations and resistance to multiple drugs have not been systematically evaluated. Molecular testing of M. tuberculosis sampled from a typical patient continues to provide a partial picture of drug resistance. A database of phenotypic and genotypic testing results, especially where prospectively collected, could document statistically significant associations and may reveal new, predictive molecular patterns. We examine the feasibility of integrating existing molecular and phenotypic drug susceptibility data to identify associations observed across multiple studies and demonstrate potential for well-integrated M. tuberculosis mutation data to reveal actionable findings.


Assuntos
Antituberculosos/farmacologia , Bases de Dados Genéticas , Farmacorresistência Bacteriana , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Antituberculosos/uso terapêutico , Genótipo , Humanos , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
19.
J Infect Dis ; 211 Suppl 2: S39-49, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25765105

RESUMO

BACKGROUND: Current phenotypic testing for drug resistance in patients with tuberculosis is inadequate primarily with respect to turnaround time. Molecular tests hold the promise of an improved time to diagnosis. METHODS: A target product profile for a molecular drug-susceptibility test (DST) was developed on the basis of a collaborative effort that included opinions gathered from researchers, clinicians, policy makers, and test developers on optimal clinical and operational characteristics in settings of intended use. In addition, the current diagnostic ecosystem and the diagnostic development landscape were mapped. RESULTS: Molecular DSTs for detecting tuberculosis in microscopy centers should ideally evaluate for resistance to rifampin, fluoroquinolones, isoniazid, and pyrazinamide and enable the selection of the most appropriate treatment regimen. Performance characteristics of DSTs need to be optimized, but compromises can be made that depend on the trade-off between a false-positive result and a false-negative result. The operational requirements of a test will vary depending on the site of implementation. However, the most-important considerations pertain to quality control, maintenance and calibration, and the ability to export data. CONCLUSION: This target product profile defines the needs as perceived by the tuberculosis stakeholder community and attempts to provide a means of communication with test developers to ensure that fit-for-purpose DSTs are being developed.


Assuntos
Antituberculosos/farmacologia , Testes Diagnósticos de Rotina/métodos , Testes de Sensibilidade Microbiana/métodos , Técnicas de Diagnóstico Molecular/métodos , Tuberculose/diagnóstico , Antituberculosos/uso terapêutico , Testes Diagnósticos de Rotina/normas , Humanos , Testes de Sensibilidade Microbiana/normas , Técnicas de Diagnóstico Molecular/normas , Controle de Qualidade , Fatores de Tempo , Tuberculose/tratamento farmacológico
20.
Malar J ; 14: 45, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25652763

RESUMO

BACKGROUND: Dried blood spots are a common medium for collecting patient blood prior to testing for malaria by molecular methods. A new shaped filter device for the quick and simple collection of a designated volume of patient blood has been designed and tested against conventional blood spots for accuracy and precision. METHODS: Shaped filter devices were laser cut from Whatman GB003 paper to absorb a 20 µl blood volume. These devices were used to sample Plasmodium falciparum infected blood and the volume absorbed was measured volumetrically. Conventional blood spots were made by pipetting 20 µl of the same blood onto Whatman 3MM paper. DNA was extracted from both types of dried blood spot using Qiagen DNA blood mini or Chelex extraction for real-time PCR analysis, and PURE extraction for malaria LAMP testing. RESULTS: The shaped filter devices collected a mean volume of 21.1 µl of blood, with a coefficient of variance of 8.1%. When used for DNA extraction by Chelex and Qiagen methodologies the mean number of international standard units of P. falciparum DNA recovered per µl of the eluate was 53.1 (95% CI: 49.4 to 56.7) and 32.7 (95% CI: 28.8 to 36.6), respectively for the shaped filter device, and 54.6 (95% CI: 52.1 to 57.1) and 12.0 (95% CI: 9.9 to 14.1), respectively for the 3MM blood spots. Qiagen extraction of 200 µl of whole infected blood yielded 853.6 international standard units of P. falciparum DNA per µl of eluate. CONCLUSIONS: A shaped filter device provides a simple way to quickly sample and store a defined volume of blood without the need for any additional measuring devices. Resultant dried blood spots may be employed for DNA extraction using a variety of technologies for nucleic acid amplification without the need for repeated cleaning of scissors or punches to prevent cross contamination of samples and results are comparable to traditional DBS.


Assuntos
Sangue/parasitologia , Dessecação/métodos , Malária Falciparum/diagnóstico , Plasmodium falciparum/isolamento & purificação , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Humanos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA