RESUMO
Migratory birds time their migration based on cues that signal resource availability for reproduction. However, with climate change, the timing of seasonal events may shift, potentially inhibiting the ability of some species to use them as accurate cues for migration. We studied the relationship between phenological shifts and reproduction by long- and short-distance migratory songbirds-Bobolinks (Dolichonyx oryzivorus) and Savannah Sparrows (Passerculus sandwichensis). Our study population breeds in hayfields and pastures in Vermont, USA, where farmers are also changing management activities in response to climate change. From 2002 to 2019, we monitored nest initiation dates to quantify correlations with environmental factors and the timing of nest initiation. We collected historical and projected precipitation and temperature data for the breeding grounds, and their respective wintering and stopover sites, the North Atlantic Oscillation (NAO) and the El Niño Southern Oscillation (ENSO). We predicted that winter conditions experienced by the short-distance migrant, the Savannah Sparrow, but not the long-distance migrant, the Bobolink, would explain the timing and success of nesting, however that this timing would be misaligned with changes in agricultural practices by hay farmers. Nest initiation dates did not show significant directional change for either species, but did vary among years. Interannual variation in Savannah Sparrow nest initiation dates was best explained by the interaction between precipitation on the breeding grounds and average wintering site (Wilmington, North Carolina). For Bobolinks, interannual variation in nest initiation dates was best explained by the interaction between breeding ground precipitation and average temperature in their fall stopover site (Barquisimieto, Venezuela). However, first haying dates in Vermont advanced by ~10 days over 18 years. These results suggest that the conflict between the timing of hay harvests and grassland songbird reproduction will increase, further threatening population processes for these species, as early harvests notably decrease annual productivity.
RESUMO
Heritability and evolvability estimates of adult traits from free-living bird populations can be used to gauge the ability of populations to respond to selection, but are rare due to difficulties in gathering detailed pedigree information. The capacity to respond to selection is particularly important for species occupying managed habitats such as agricultural grasslands because of the potential for humans to accidentally influence traits. We calculated heritability and evolvability of six morphological traits in a population of Savannah Sparrows (Passerculus sandwichensis) breeding in a large agricultural landscape. We used microsatellite analysis to determine a genetic pedigree, revealing a high level of extra-pair paternity (63%) within a relatively philopatric population. For the entire population, heritabilities varied from low to high (bill width: 0.160±0.182 to tarsus length: 0.651±0.155), while evolvabilities were low across all traits (wing length: 0.035±0.013 to body mass: 0.066±0.106). Our results indicate that any directional selection from agricultural management practices will produce negligible changes in basic morphometrics of Savannah sparrow populations occupying the Champlain Valley of Vermont, USA.
Assuntos
Agricultura , Evolução Biológica , Cruzamento , Pradaria , Padrões de Herança/genética , Pardais/genética , Animais , Loci Gênicos , Repetições de Microssatélites/genética , Fenótipo , Característica Quantitativa Herdável , TemperaturaRESUMO
Bobolinks (Dolichonyx oryzivorus) migrate from their breeding grounds in North America to their wintering grounds in South America during the fall each year. A small number of Bobolinks stop temporarily in Galapagos, and potentially carry parasites. On the North American breeding grounds, Bobolinks carry a least two of the four Plasmodium lineages recently detected in resident Galapagos birds. We hypothesized that Bobolinks carried these parasites to Galapagos, where they were bitten by mosquitoes that then transmitted the parasites to resident birds. The haemosporidian parasite community in 44% of the Bobolinks we captured was consistent with those on their breeding grounds. However, the lineages were not those found in Galapagos birds. Our results provide a parasite community key for future monitoring.
RESUMO
Oceanic archipelagos are vulnerable to natural introduction of parasites via migratory birds. Our aim was to characterize the geographic origins of two Plasmodium parasite lineages detected in the Galapagos Islands and in North American breeding bobolinks (Dolichonyx oryzivorus) that regularly stop in Galapagos during migration to their South American overwintering sites. We used samples from a grassland breeding bird assemblage in Nebraska, United States, and parasite DNA sequences from the Galapagos Islands, Ecuador, to compare to global data in a DNA sequence registry. Homologous DNA sequences from parasites detected in bobolinks and more sedentary birds (e.g., brown-headed cowbirds Molothrus ater, and other co-occurring bird species resident on the North American breeding grounds) were compared to those recovered in previous studies from global sites. One parasite lineage that matched between Galapagos birds and the migratory bobolink, Plasmodium lineage B, was the most common lineage detected in the global MalAvi database, matching 49 sequences from unique host/site combinations, 41 of which were of South American origin. We did not detect lineage B in brown-headed cowbirds. The other Galapagos-bobolink match, Plasmodium lineage C, was identical to two other sequences from birds sampled in California. We detected a close variant of lineage C in brown-headed cowbirds. Taken together, this pattern suggests that bobolinks became infected with lineage B on the South American end of their migratory range, and with lineage C on the North American breeding grounds. Overall, we detected more parasite lineages in bobolinks than in cowbirds. Galapagos Plasmodium had similar host breadth compared to the non-Galapagos haemosporidian lineages detected in bobolinks, brown-headed cowbirds, and other grassland species. This study highlights the utility of global haemosporidian data in the context of migratory bird-parasite connectivity. It is possible that migratory bobolinks bring parasites to the Galapagos and that these parasites originate from different biogeographic regions representing both their breeding and overwintering sites.
RESUMO
Population growth and decline are particularly sensitive to changes in three key life-history parameters: annual productivity, juvenile survival, and adult survival. However, for many species these parameters remain unknown. For example, although grassland songbirds are imperiled throughout North America, for this guild, only a small number of studies have assessed these parameters. From 2002 to 2006, in the agricultural landscape of the Champlain Valley of Vermont and New York, USA, we studied Savannah Sparrow (Passerculus sandwichensis) and Bobolink (Dolichonyx oryzivorus) demography on four grassland treatments: (1) early-hayed fields cut before 11 June and again in early- to mid-July; (2) middle-hayed fields cut once between 21 June and 10 July; (3) late-hayed fields cut after 1 August; and (4) rotationally grazed pastures. We assessed whether these treatments affected adult apparent survival (phi) and recruitment (f), how sensitive these parameters were to the presence of nonbreeders and local dispersal, and the populations' ability to persist in these four habitats. On average, birds using late-hayed fields had > 25% higher apparent survival than those on the more intensively managed early-hayed, middle-hayed, and grazed fields. Overall male phi was 35% higher than female phi, and Savannah Sparrow phi was 44% higher than Bobolink phi. Across all analyses and treatments, apparent survival estimates were 0.58-0.85 for male and 0.48-0.71 for female Savannah Sparrows, and 0.52-0.70 for male and 0.19-0.55 for female Bobolinks. For males of both species, potential nonbreeders decreased the precision of and lowered apparent survival estimates by 25%; female estimates showed little variation with the inclusion of nonbreeders. Inclusion of local dispersal observations increased apparent survival estimates and, in many cases, increased precision, though the effect was stronger for Savannah Sparrows than for Bobolinks, and also stronger for males than for females. High Savannah Sparrow apparent survival rates resulted in stable or near stable populations (lambda approximately 1), particularly in late-hayed and grazed fields, while low Bobolink apparent survival rates resulted in strongly declining populations (lambda < 1) in all treatments.
Assuntos
Ecossistema , Aves Canoras/fisiologia , Agricultura , Animais , Feminino , Masculino , Poaceae/fisiologia , Dinâmica Populacional , Reprodução/fisiologiaRESUMO
Hay harvests have detrimental ecological effects on breeding songbirds, as harvesting results in nest failure. Importantly, whether harvesting also affects evolutionary processes is not known. We explored how hay harvest affected social and genetic mating patterns, and thus, the overall opportunity for sexual selection and evolutionary processes for a ground-nesting songbird, the Savannah sparrow (Passerculus sandwichensis). On an unharvested field, 55% of females were in polygynous associations, and social polygyny was associated with greater rates of extra-pair paternity (EPP). In this treatment, synchrony explained variation in EPP rates, as broods by more synchronous females had more EPP than broods by asynchronous females. In contrast, on a harvested field, simultaneous nest failure caused by haying dramatically decreased the overall incidence of EPP by increasing the occurrence of social monogamy and, apparently, the ability of polygynous males to maintain paternity in their own nests. Despite increased social and genetic monogamy, these haying-mediated changes in mating systems resulted in greater than twofold increase in the opportunity for sexual selection. This effect arose, in part, from a 30% increase in the variance associated with within-pair fertilization success, relative to the unharvested field. This effect was caused by a notable increase (+110%) in variance associated with the quality of social mates following simultaneous nest failure. Because up to 40% of regional habitat is harvested by early June, these data may demonstrate a strong population-level effect on mating systems, sexual selection, and consequently, evolutionary processes.
Assuntos
Agricultura , Migração Animal/fisiologia , Evolução Biológica , Pardais/genética , Animais , Biomassa , Feminino , Variação Genética , Invertebrados , Masculino , Reprodução , Seleção Genética , Comportamento Sexual AnimalRESUMO
In recent decades, earlier and more frequent harvests of agricultural grasslands have been implicated as a major cause of population declines in grassland songbirds. From 2002 to 2005, in the Champlain Valley of Vermont and New York, USA, we studied the reproductive success of Savannah Sparrows (Passerculus sandwichensis) and Bobolinks (Dolichonyx oryzivorus) on four grassland treatments: (1) early-hayed fields cut before 11 June and again in early- to mid-July; (2) middle-hayed fields cut once between 21 June and 10 July; (3) late-hayed fields cut after 1 August; and (4) rotationally grazed pastures. Both the number of fledglings per female per year and nest success (logistic-exposure method) varied among treatments and between species. Although birds initiated nests earlier on early-hayed fields compared to others, haying caused 99% of active Savannah Sparrow and 100% of active Bobolink nests to fail. Both the initial cutting date and time between cuttings influenced renesting behavior. After haying, Savannah Sparrows generally remained on early-hayed fields and immediately renested (clutch completion 15.6 +/- 1.28 days post-haying; all values are reported as mean +/- SE), while Bobolinks abandoned the fields for at least two weeks (mean clutch completion 33 +/- 0.82 days post-haying). While female Savannah Sparrows fledged more offspring per year (1.28 +/- 0.16) than female Bobolinks (0.05 +/- 0.05), reproductive success on early-hayed fields was low. The number of fledglings per female per year was greater on middle-hayed fields (Savannah Sparrows, 3.47 +/- 0.42; Bobolinks, 2.22 +/- 0.26), and late-hayed fields (Savannah Sparrows, 3.29 +/- 0.30; Bobolinks, 2.79 +/- 0.18). Reproductive success was moderate on rotationally grazed pastures, where female Savannah Sparrows and female Bobolinks produced 2.32 +/- 0.25 and 1.79 +/- 0.33 fledgling per year, respectively. We simultaneously conducted cutting surveys throughout the Champlain Valley and found that 3-8% of hayfield habitat was cut by 1-4 June, 25-40% by 12-16 June, and 32-60% by 28 June-2 July. Thus, the majority of grassland habitat was cut during the breeding season; however, late-hayed fields served as high-quality reserves for late-nesting female Bobolinks that were displaced from previously hayed fields. For fields first cut in May, a 65-day interval between cuts could provide enough time for both species to successfully fledge young.