Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(1): 114-123, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096155

RESUMO

Precise visualization of biological processes necessitates reliable coloring technologies, and fluorescence imaging has emerged as a powerful method for capturing dynamic cellular events. Low emission intensity and solubility of intrinsic fluorescence are still challenging, hindering their application in the biomedical field. The nanostructurization and functionalization of the insoluble phytochemicals, such as chlorophyll and curcumin, into carbon dots (CDs) were conducted to address these challenges. Due to their unique fluorescence characteristics and biocompatibility, CDs derived from medicinal plants hold promise as bioimaging agents. Further, the nitrogen in situ functionalization of the as-synthesized CDs offered tunable optical properties and enhanced solubility. The surface modification aims to achieve a more positive zeta potential, facilitating penetration through biological membranes. This work provides valuable insights into utilizing functionalized phytochemical-embedded carbon dots for bioimaging applications. The doping of nitrogen by adding urea showed an alteration of surface charge, which is more positive based on zeta potential measurement. The more positive CD particles showed that Andrographis paniculata-urea-based CDs were the best particles to penetrate cells than others related to the alteration of the surface charge and the functional group of the CDs, with the optimum dose of 12.5 µg/mL for 3 h of treatment for bioimaging assay.


Assuntos
Plantas Medicinais , Pontos Quânticos , Pontos Quânticos/química , Carbono/química , Nitrogênio/química , Ureia
2.
Heliyon ; 9(9): e20089, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809799

RESUMO

Even entering the third year of the COVID-19 pandemic, only a small number of COVID-19 antiviral drugs are approved. Curcumin has previously shown antiviral activity against SARS-CoV-2 nucleocapsid, but its poor bioavailability limits its clinical uses. Utilizing nanotechnology structures, curcumin-derived carbon-dots (cur-CDs) were synthesized to increase low bioavailability of curcumin. In-silico analyses were performed using molecular docking, inhibition of SARS-CoV-2 nucleocapsid C-terminal domain (N-CTD) and antiviral activity were assessed in dimer-based screening system (DBSS) and in vitro respectively. Curcumin bound with the N-CTD at ΔG = -7.6 kcal/mol, however modifications into cur-CDs significantly improved the binding affinity and %interaction. Cur-CDs also significantly increased protection against SARS-CoV-2 in both DBSS and in vitro at MOI = 0.1. This study demonstrated the effect of post-infection treatment of curcumin and novel curcumin-derived carbon-dots on SARS-CoV-2 N-CTD dimerization. Further investigation on pre-infection and in-vivo treatment of curcumin and cur-CDs are required for a comprehensive understanding on the carbon-dots enhanced antiviral activity of curcumin against SARS-CoV-2.

3.
J Genet Eng Biotechnol ; 21(1): 93, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801271

RESUMO

BACKGROUND: Since effective antiviral drugs for COVID-19 are still limited in number, the exploration of compounds that have antiviral activity against SARS-CoV-2 is in high demand. Porphyrin is potentially developed as a COVID-19 antiviral drug. However, its low solubility in water restricts its clinical application. Reconstruction of porphyrin into carbon dots is expected to possess better solubility and bioavailability as well as lower biotoxicity. METHODS AND RESULTS: In this study, we investigated the antiviral activity of porphyrin and porphyrin-derived carbon dots against SARS-CoV-2. Through the in silico analysis and assessment using a novel drug screening platform, namely dimer-based screening system, we demonstrated the capability of the antivirus candidates in inhibiting the dimerization of the C-terminal domain of SARS-CoV-2 Nucleocapsid. It was shown that porphyrin-derived carbon dots possessed lower cytotoxicity on Vero E6 cells than porphyrin. Furthermore, we also assessed their antiviral activity on the SARS-CoV-2-infected Vero E6 cells. The transformation of porphyrin into carbon dots substantially augmented its performance in disrupting SARS-CoV-2 propagation in vitro. CONCLUSIONS: Therefore, this study comprehensively demonstrated the potential of porphyrin-derived carbon dots to be developed further as a promisingly safe and effective COVID-19 antiviral drug.

4.
ACS Omega ; 8(11): 10077-10085, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36969408

RESUMO

The alteration of ACE2 expression level, which has been studied in many diseases, makes the topic of ACE2 inducer potential crucial to be explored. The ACE2 inducer could further be designed to control the ACE2 expression level, which is appropriate to a specific case. An in vitro study of well-characterized carbon dots (CDs), made from citric acid and urea, was performed to determine their ability to modulate the ACE2 receptor. Gene expression of ACE2 was quantified using concentrations adjusted for IC50 results from CDs viability assays in HEK 293 and A549 cell lines. RT-qPCR was used to assess the expression of the ACE2 gene and its induction effect in normal cell lines (HEK-293A). According to the results of the tests, ACE2 is expressed in HEK-293A cell lines, and diminazene aceturate can increase ACE2 expression. The effect of CDs on ACE2 gene expression was further examined on the cell lines that had previously been induced with diminazene aceturate, which resulted in upregulation of the ACE2 expression level. An in silico study has been done by using a molecular docking approach. The molecular docking results show that CDs can make strong interactions with ACE2 amino acid residues through hydrophobic interaction, π-π interaction, π-cation interaction, and ionic interaction.

5.
Phys Chem Chem Phys ; 24(44): 27163-27172, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36321498

RESUMO

Nitrogen and oxygen-based functionalized carbon dot (CDs) surfaces have attracted significant attention due to their ability to tailor the optical and electronic properties of CDs. However, the complex synthesis process and structure of the functionalized CDs hinder an in-depth understanding of their mechanism, limiting their potential applications. Herein, we report CDs functionalized with amino and carbonyl functional groups and reveal the mechanism of interaction between the amino and carbonyl groups and the CDs' optical and electronic properties. Both Time-dependent Density Functional Theory (TD-DFT) and experimental studies revealed that the synergetic effects between amino and carbonyl groups significantly shift the absorption peaks to the NIR region and strengthen their absorption intensity. Furthermore, their absorption and bandgap energy could be tuned by optimizing the amino to carbonyl ratio on CDs surfaces. This study suggests that amino and carbonyl groups synergistically tailor the CDs' optical and electronic properties through frontier orbital hybridization and high charge transfer. This knowledge opens a new avenue for tailoring the desired optical and electronic properties of CDs for any application.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Pontos Quânticos/química , Nitrogênio/química , Oxigênio/química , Eletrônica
7.
Sci Rep ; 11(1): 22211, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782669

RESUMO

Zero-dimensional Perovskite Magic-size Clusters play crucial roles in understanding and controlling nucleation and growth of semiconductor nanoparticles. However, their metastability behavior is a critical hindrance for reliable characterizations. Here, we report the first demonstration of using an excess amount of surface ligand and SiO2 as novel passivation for synthesizing the magic-sized clusters (MSCs) by the Ligand-assisted reprecipitation method. A synergetic effect between an excessed surface ligand and SiO2 inhibits the protonation and deprotonation reaction between amine-based and acid-based ligand, leading to enhanced PL stability. The obtained CH3NH3PbBr3 PMSCs/SiO2 retain 70% of its initial emission intensity in ambient conditions for 20 days. This passivation approach opens an entirely new avenue for the reliable characterizations of CH3NH3PbBr3 PMSCs, which will significantly broaden their application for understanding and controlling nucleation and growth of semiconductor nanoparticles.

8.
Nanoscale ; 13(16): 7523-7532, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33870394

RESUMO

Solar evaporation using photothermal materials is an environmentally friendly and feasible solution to overcome the water scarcity issue by utilizing the abundant solar energy source. Some key points for efficient solar-to-thermal energy conversion have been extensively studied. Among them, the advancement of solar absorber materials has emerged as an attractive research topic, owing to their potential to enhance the efficiency of solar to thermal conversion significantly. Recently, carbon dots (CDs) have attracted great interest for their applications in this field. CDs have many desirable properties, such as broad light absorption (200-800 nm), high photothermal conversion efficiency (more than 90%), tunable structure and surface functionalization, easy to produce and abundant raw materials that meet the requirements for this application. In this review, the integration of CDs into solar evaporation systems and recent advances in CD-based solar absorbers will be summarized and discussed. Before that, brief knowledge of carbon-based solar thermal evaporation, including its mechanism and strategies to improve the efficiency, is provided, followed by CDs' synthesis and tunable properties that can be optimized for this application. Finally, the challenges and perspectives of research for CD-based solar evaporation are proposed, for example, optimizing solar absorbers by decorating hydroxyl-rich CDs in 2D or 3D structures.

9.
Nanomaterials (Basel) ; 11(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401630

RESUMO

Carbon-based Quantum dots (C-QDs) are carbon-based materials that experience the quantum confinement effect, which results in superior optoelectronic properties. In recent years, C-QDs have attracted attention significantly and have shown great application potential as a high-performance supercapacitor device. C-QDs (either as a bare electrode or composite) give a new way to boost supercapacitor performances in higher specific capacitance, high energy density, and good durability. This review comprehensively summarizes the up-to-date progress in C-QD applications either in a bare condition or as a composite with other materials for supercapacitors. The current state of the three distinct C-QD families used for supercapacitors including carbon quantum dots, carbon dots, and graphene quantum dots is highlighted. Two main properties of C-QDs (structural and electrical properties) are presented and analyzed, with a focus on the contribution to supercapacitor performances. Finally, we discuss and outline the remaining major challenges and future perspectives for this growing field with the hope of stimulating further research progress.

10.
RSC Adv ; 11(3): 1360-1366, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35424102

RESUMO

We report a rapid growth of the CH3NH3PbCl3 single crystal through microwave irradiation. A systematic evaluation of the structural and optical properties of the obtained single crystal was also conducted. 1 minute is the optimum microwave irradiation time that generated a large single crystal of dimension (5 × 5 × 2.5) mm3. The obtained crystal exhibits broad absorption in UV range and near-visible light luminescence under UV excitation with an optical bandgap around 2.8 eV. A fast and simple synthesis method of CH3NH3PbCl3 single crystal with these outstanding properties could be potentially applied for any optoelectronic application with scale-up production.

11.
RSC Adv ; 11(63): 39917-39923, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-35494130

RESUMO

Tunable emissive solid-state carbon nanoparticles (CNPs) have been successfully synthesized by a facile synthesis through microwave irradiation. Modulating microwave interaction with the sample to generate abrupt localized heating is a long-term challenge to tailor the photoluminescence properties of CNPs. This study systematically revealed that the sample temperature through microwave irradiation plays a crucial role in controlling the photoluminescence properties over other reaction conditions, such as irradiation time and microwave duty cycle. When the sample temperature reached 155 °C in less than three minutes, the CNP sample exhibited a green-yellowish emission with the highest quantum yield (QY) of 14.6%. Time-dependent density functional theory (TD-DFT) study revealed that the tunable photoluminescence properties of the CNPs can possibly be ascribed to their nitrogen concentrations, which were dictated by the sample temperature during irradiation. This study opens up a promising route for the well-controlled synthesis of luminescent CNPs through microwave irradiation.

12.
ACS Appl Mater Interfaces ; 11(3): 2768-2781, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30589254

RESUMO

In this work, we reported the synthesis of an engineered novel nanocarrier composed of biodegradable charged polyester vectors (BCPVs) and graphene quantum dots (GQDs) for pancreatic cancer (MiaPaCa-2 cells) therapy applications. Such a nanocarrier was utilized to co-load doxorubicin (DOX) and small interfering ribonucleic acid (siRNA), resulting in the formation of GQD/DOX/BCPV/siRNA nanocomplexes. The resulting nanocomplexes have demonstrated high stability in physiologically mimicking media, excellent K-ras downregulation activity, and effective bioactivity inhibition for MiaPaCa-2 cells. More importantly, laser light was used to generate heat for the nanocomplexes via the photothermal effect to damage the cells, which was further employed to trigger the release of payloads from the nanocomplexes. Such triggered release function greatly enhanced the anticancer activity of the nanocomplexes. Preliminary colony formation study also suggested that GQD/DOX/BCPV/siRNA nanocomplexes are qualified carrier candidates in subsequent in vivo tests.


Assuntos
Grafite/química , Nanopartículas/química , Neoplasias Pancreáticas/terapia , Fototerapia , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Grafite/uso terapêutico , Humanos , Luz , Neoplasias Pancreáticas/patologia , Polímeros/química , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico
13.
RSC Adv ; 9(13): 7375-7381, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519984

RESUMO

Liquid Carbon Dots (CDs) were successfully synthesized by hydrothermal method using urea and citric acid as raw materials. TEM images confirmed that the CDs have a spherical shape with a homogeneous distribution. The as-prepared liquid CDs could absorb ultraviolet (UV) and first near infra-red (NIR) window simultaneously. However, the photoluminescence (PL) of the liquid CDs was damaged by their quenching effect. To overcome this issue, the liquid CDs were dispersed in poly(vinyl) alcohol (PVA) to fabricate the composite film. Herein, the dual-peak absorption properties of the CDs/PVA composite films were investigated for the first time. The composite films could maintain the simultaneous UV and first NIR window absorption property even after being preheated up to 200 °C, implying that the structure of CDs was well retained during the transition from the liquid to films. Daylight treatment for seven days produced minimum changes in the UV-vis and PL spectra, which indicates that the CDs/PVA film has more stable optical properties than the liquid CDs.

14.
Sci Rep ; 6: 21042, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876153

RESUMO

Graphene quantum dots (GQDs) containing N atoms were successfully synthesized using a facile, inexpensive, and environmentally friendly hydrothermal reaction of urea and citric acid, and the effect of the GQDs' C-N configurations on their photoluminescence (PL) properties were investigated. High-resolution transmission electron microscopy (HR-TEM) images confirmed that the dots were spherical, with an average diameter of 2.17 nm. X-ray photoelectron spectroscopy (XPS) analysis indicated that the C-N configurations of the GQDs substantially affected their PL intensity. Increased PL intensity was obtained in areas with greater percentages of pyridinic-N and lower percentages of pyrrolic-N. This enhanced PL was attributed to delocalized π electrons from pyridinic-N contributing to the C system of the GQDs. On the basis of energy electron loss spectroscopy (EELS) and UV-Vis spectroscopy analyses, we propose a PL mechanism for hydrothermally synthesized GQDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA