Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Agric Food Chem ; 72(6): 3017-3024, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315649

RESUMO

Dehydrosqualene synthase (CrtM), as a squalene synthase-like enzyme from Staphylococcus aureus, can naturally utilize farnesyl diphosphate to produce dehydrosqualene (C30H48). However, no study has documented the natural production of squalene (C30H50) by CrtM. Here, based on an HPLC-Q-Orbitrap-MS/MS study, we report that the expression of crtM in vitro or in Bacillus subtilis 168 both results in the output of squalene, dehydrosqualene, and phytoene (C40H64). Notably, wild-type CrtM exhibits a significantly higher squalene yield compared to squalene synthase (SQS) from Bacillus megaterium with an approximately 2.4-fold increase. Moreover, the examination of presqualene diphosphate's stereostructures in both CrtM and SQS enzymes provides further understanding into the presence of multiple identified terpenoids. In summary, this study not only provides insights into the promiscuity demonstrated by squalene synthase-like enzymes but also highlights a new strategy of utilizing CrtM as a potential replacement for SQS in cell factories, thereby enhancing squalene production.


Assuntos
Farnesil-Difosfato Farnesiltransferase , Esqualeno , Esqualeno/análogos & derivados , Esqualeno/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Espectrometria de Massas em Tandem , Terpenos/metabolismo , Óxido Nítrico Sintase
2.
Mass Spectrom Rev ; 42(2): 546-576, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34091937

RESUMO

Advancements in liquid chromatography and mass spectrometry over the last decades have led to a significant development in mass spectrometry-based proteome quantification approaches. An increasingly attractive strategy is multiplex isotope labeling, which significantly improves the accuracy, precision and throughput of quantitative proteomics in the data-dependent acquisition mode. Isotope labeling-based approaches can be classified into MS1-based and MS2-based quantification. In this review, we give an overview of approaches based on chemical isotope labeling and discuss their principles, benefits, and limitations with the goal to give insights into fundamental questions and provide a useful reference for choosing a method for quantitative proteomics. As a perspective, we discuss the current possibilities and limitations of multiplex, isotope labeling approaches for the data-independent acquisition mode, which is increasing in popularity.


Assuntos
Proteoma , Proteômica , Proteômica/métodos , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Proteoma/análise , Cromatografia Líquida/métodos
3.
ACS Appl Mater Interfaces ; 14(34): 39265-39273, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35984747

RESUMO

Here, we present multifunctional fluorescent nanodiamonds (FNDs) for simultaneous drug delivery and free radical detection. For this purpose, we modified FNDs containing nitrogen vacancy (NV) centers with a diazoxide derivative. We found that our particles enter cells more easily and are able to deliver this cancer drug into HeLa cells. The particles were characterized by infrared spectroscopy, dynamic light scattering, and secondary electron microscopy. Compared to the free drug, we observe a sustained release over 72 h rather than 12 h for the free drug. Apart from releasing the drug, with these particles, we can measure the drug's effect on free radical generation directly. This has the advantage that the response is measured locally, where the drug is released. These FNDs change their optical properties based on their magnetic surrounding. More specifically, we make use of a technique called relaxometry to detect spin noise from the free radical at the nanoscale with subcellular resolution. We further compared the results from our new technique with a conventional fluorescence assay for the detection of reactive oxygen species. This provides a new method to investigate the relationship between drug release and the response by the cell via radical formation or inhibition.


Assuntos
Nanodiamantes , Difusão Dinâmica da Luz , Células HeLa , Humanos , Microscopia de Fluorescência , Nanodiamantes/química , Nitrogênio/química
4.
J Appl Toxicol ; 42(12): 1921-1936, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35857281

RESUMO

The biocide tetrakis(hydroxymethyl)phosphonium sulphate (THPS) and other members of the tetrakis(hydroxymethyl) phosphonium salts (THPX) family are associated with liver toxicity in several mammalian species and teratogenicity in rabbits. Malformations include skeletal changes and abnormalities in eye development and are very similar to those seen with vitamin A deficiency or excess. For this reason, it was hypothesized that teratogenicity of THPS(X) might be attributed to disturbances in retinol availability and/or metabolism as a result of maternal toxicity, for example, either due to insufficient dietary intake by the mothers or due to liver toxicity. Therefore, in the present study, liver toxicity and vitamin A homeostasis were studied in pregnant rabbits that were exposed to 13.8 or 46.0 mg/kg THPS during organogenesis and in precision-cut liver slices of rats and rabbits exposed to 0-70 µM THPS. Results show that in vivo exposure to THPS leads to a marked reduction of food intake, increased plasma concentrations of γ-glutamytransferase, degenerative changes in the liver and to changes in retinoid content in liver and plasma in the rabbits during organogenesis. In addition, THPS, both in vivo and ex vivo, caused a change in expression of proteins related to vitamin A metabolism and transport. Together, these observations could explain the birth defects observed in earlier teratogenicity studies.


Assuntos
Desinfetantes , Gravidez , Feminino , Coelhos , Ratos , Animais , Vitamina A/metabolismo , Sulfatos , Homeostase , Fígado/metabolismo , Mamíferos/metabolismo
5.
Mol Cell ; 82(14): 2650-2665.e12, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35662397

RESUMO

Coenzyme A (CoA) is essential for metabolism and protein acetylation. Current knowledge holds that each cell obtains CoA exclusively through biosynthesis via the canonical five-step pathway, starting with pantothenate uptake. However, recent studies have suggested the presence of additional CoA-generating mechanisms, indicating a more complex system for CoA homeostasis. Here, we uncovered pathways for CoA generation through inter-organismal flows of CoA precursors. Using traceable compounds and fruit flies with a genetic block in CoA biosynthesis, we demonstrate that progeny survive embryonal and early larval development by obtaining CoA precursors from maternal sources. Later in life, the microbiome can provide the essential CoA building blocks to the host, enabling continuation of normal development. A flow of stable, long-lasting CoA precursors between living organisms is revealed. This indicates the presence of complex strategies to maintain CoA homeostasis.


Assuntos
Coenzima A , Microbiota , Animais , Coenzima A/genética , Coenzima A/metabolismo , Drosophila/metabolismo , Feminino , Humanos , Mães , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Zigoto/metabolismo
6.
Molecules ; 27(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630770

RESUMO

N-dealkylation, the removal of an N-alkyl group from an amine, is an important chemical transformation which provides routes for the synthesis of a wide range of pharmaceuticals, agrochemicals, bulk and fine chemicals. N-dealkylation of amines is also an important in vivo metabolic pathway in the metabolism of xenobiotics. Identification and synthesis of drug metabolites such as N-dealkylated metabolites are necessary throughout all phases of drug development studies. In this review, different approaches for the N-dealkylation of amines including chemical, catalytic, electrochemical, photochemical and enzymatic methods will be discussed.


Assuntos
Aminas , Remoção de Radical Alquila
7.
ChemMedChem ; 17(11): e202200040, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35303400

RESUMO

A novel method for the selective catalytic N-dealkylation of drug molecules on a nanoporous gold (NPG) catalyst producing valuable N-dealkylated metabolites and intermediates is described. Drug metabolites are important chemical entities at every stage of drug discovery and development, from exploratory discovery to clinical development, providing the safety profiles and the ADME (adsorption, distribution, metabolism, and elimination) of new drug candidates. Synthesis was carried out in aqueous solution at 80 °C using air (oxygen source) as oxidant, in single step with good isolated yields. Different examples examined in this study showed that aerobic catalytic N-dealkylation of drug molecules on NPG has a broad scope supporting N-deethylation, N-deisopropylation and N-demethylation, converting either 3° amines to 2° amines, or 2° amines to 1° amines.


Assuntos
Ouro , Nanoporos , Aminas/química , Remoção de Radical Alquila , Ouro/química , Estresse Oxidativo
8.
Acta Biomater ; 141: 209-218, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35038586

RESUMO

Lung implantable devices have been widely adopted as mechanical interventions for a wide variety of pulmonary pathologies. Despite successful initial treatment, long-term efficacy can often be impacted by fibrotic or granulation tissue formation at the implant sites. This study aimed to explore the lung-device interface by identifying the adhered proteome on lung devices explanted from patients with severe emphysema. In this study, scanning electron microscopy is used to visualize the adhesion of cells and proteins to silicone and nitinol surfaces of explanted endobronchial valves. By applying high-resolution mass-spectrometry, the surface proteome of eight explanted valves is characterized, identifying 263 unique protein species to be mutually adsorbed on the valves. This subset is subjected to gene enrichment analysis, matched with known databases and further validated using immunohistochemistry. Enrichment analyses reveal dominant clusters of functionally-related ontology terms associated with coagulation, pattern recognition receptor signaling, immune responses, cytoskeleton organization, cell adhesion and migration. Matching results show that extracellular matrix proteins and damage-associated molecular patterns are cardinal in the formation of the surface proteome. This is the first study investigating the composition of the adhered proteome on explanted lung devices, setting the groundwork for hypothesis generation and further exploration. STATEMENT OF SIGNIFICANCE: This is the first study investigating the composition of the adhered proteome on explanted lung devices. Lung implantable devices have been widely adopted as mechanical interventions for pulmonary pathologies. Despite successful initial treatment, long-term efficacy can often be impacted by fibrotic or granulation tissue formation around the implant sites. We identified the adhered proteome on explanted lung devices using several techniques. We identified 263 unique protein species to be mutually adsorbed on explanted lung devices. Pathway analyses revealed that these proteins are associated with coagulation, pattern recognition receptor signaling, immune responses, cytoskeleton organization, cell adhesion and migration. Furthermore, we identified that especially extracellular matrix proteins and damage-associated molecular patterns were cardinal in the formation of the surface proteome.


Assuntos
Proteoma , Silicones , Ligas , Proteínas da Matriz Extracelular , Humanos , Pulmão , Receptores de Reconhecimento de Padrão
9.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34451830

RESUMO

Methylphenidate is one of the most widely used oral treatments for attention-deficit/hyperactivity disorder (ADHD). The drug is mainly absorbed in the small intestine and has low bioavailability. Accordingly, a high interindividual variability in terms of response to the treatment is known among ADHD patients treated with methylphenidate. Nonetheless, very little is known about the factors that influence the drug's absorption and bioavailability. Gut microbiota has been shown to reduce the bioavailability of a wide variety of orally administered drugs. Here, we tested the ability of small intestinal bacteria to metabolize methylphenidate. In silico analysis identified several small intestinal bacteria to harbor homologues of the human carboxylesterase 1 enzyme responsible for the hydrolysis of methylphenidate in the liver into the inactive form, ritalinic acid. Despite our initial results hinting towards possible bacterial hydrolysis of the drug, up to 60% of methylphenidate is spontaneously hydrolyzed in the absence of bacteria and this hydrolysis is pH-dependent. Overall, our results indicate that the stability of methylphenidate is compromised under certain pH conditions in the presence or absence of gut microbiota.

10.
Anal Chem ; 93(23): 8196-8202, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34053216

RESUMO

Data-independent acquisition (DIA) is an increasingly used approach for quantitative proteomics. However, most current isotope labeling strategies are not suitable for DIA as they lead to more complex MS2 spectra or severe ratio distortion. As a result, DIA suffers from a lower throughput than data-dependent acquisition (DDA) due to a lower level of multiplexing. Herein, we synthesized an isotopically labeled acetyl-isoleucine-proline (Ac-IP) tag for multiplexed quantification in DIA. Differentially labeled peptides have distinct precursor ions carrying the quantitative information but identical MS2 spectra since the isotopically labeled Ac-Ile part leaves as a neutral loss upon collision-induced dissociation, while fragmentation of the peptide backbone generates regular fragment ions for identification. The Ac-IP-labeled samples can be analyzed using general DIA liquid chromatography-mass spectrometry settings, and the data obtained can be processed with established approaches. Relative quantification requires deconvolution of the isotope envelope of the respective precursor ions. Suitability of the Ac-IP tag is demonstrated with a triplex-labeled yeast proteome spiked with bovine serum albumin that was mixed at 10:5:1 ratios, resulting in measured ratios of 9.7:5.3:1.1.


Assuntos
Isoleucina , Proteoma , Marcação por Isótopo , Prolina , Proteômica
11.
Anal Chem ; 92(24): 16149-16157, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33256395

RESUMO

Quantifying proteins based on peptide-coupled reporter ions is a multiplexed quantitative strategy in proteomics that alleviates the problem of ratio distortion caused by peptide cofragmentation, as commonly observed in other reporter-ion-based approaches, such as TMT and iTRAQ. Data-independent acquisition (DIA) is an attractive alternative to data-dependent acquisition (DDA) due to its better reproducibility. While multiplexed labeling is widely used in DDA, it is rarely used in DIA, presumably because current approaches lead to more complex MS2 spectra, severe ratio distortion, or to a reduction in quantification accuracy and precision. Herein, we present a versatile acetyl-alanine-glycine (Ac-AG) tag that conceals quantitative information in isobarically labeled peptides and reveals it upon tandem MS in the form of peptide-coupled reporter ions. Since the peptide-coupled reporter ion is precursor-specific while fragment ions of the peptide backbone originating from different labeling channels are identical, the Ac-AG tag is compatible with both DDA and DIA. By isolating the monoisotopic peak of the precursor ion in DDA, intensities of the peptide-coupled reporter ions represent the relative ratios between constituent samples, whereas in DIA, the ratio can be inferred after deconvoluting the peptide-coupled reporter ion isotopes. The proteome quantification capability of the Ac-AG tag was demonstrated by triplex labeling of a yeast proteome spiked with bovine serum albumin (BSA) over a 10-fold dynamic range. Within this complex proteomics background, BSA spiked at 1:5:10 ratios was detected at ratios of 1.00:4.87:10.13 in DDA and 1.16:5.20:9.64 in DIA.


Assuntos
Espectrometria de Massas , Proteômica/métodos , Glicina/química , Limite de Detecção , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Coloração e Rotulagem
12.
BMC Biol ; 18(1): 137, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33076930

RESUMO

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Gastrointestinal tract dysfunction is one of the non-motor features, where constipation is reported as the most common gastrointestinal symptom. Aromatic bacterial metabolites are attracting considerable attention due to their impact on gut homeostasis and host's physiology. In particular, Clostridium sporogenes is a key contributor to the production of these bioactive metabolites in the human gut. RESULTS: Here, we show that C. sporogenes deaminates levodopa, the main treatment in Parkinson's disease, and identify the aromatic aminotransferase responsible for the initiation of the deamination pathway. The deaminated metabolite from levodopa, 3-(3,4-dihydroxyphenyl)propionic acid, elicits an inhibitory effect on ileal motility in an ex vivo model. We detected 3-(3,4-dihydroxyphenyl)propionic acid in fecal samples of Parkinson's disease patients on levodopa medication and found that this metabolite is actively produced by the gut microbiota in those stool samples. CONCLUSIONS: Levodopa is deaminated by the gut bacterium C. sporogenes producing a metabolite that inhibits ileal motility ex vivo. Overall, this study underpins the importance of the metabolic pathways of the gut microbiome involved in drug metabolism not only to preserve drug effectiveness, but also to avoid potential side effects of bacterial breakdown products of the unabsorbed residue of medication.


Assuntos
Antiparkinsonianos/metabolismo , Clostridium/metabolismo , Motilidade Gastrointestinal , Levodopa/metabolismo , Transaminases/metabolismo , Animais , Antiparkinsonianos/química , Clostridium/enzimologia , Desaminação , Microbioma Gastrointestinal , Levodopa/química , Masculino , Camundongos/microbiologia , Camundongos Endogâmicos C57BL , Doença de Parkinson/tratamento farmacológico
13.
J Proteome Res ; 19(9): 3817-3824, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32786690

RESUMO

Quantifying peptides based on unique peptide fragment ions avoids the issue of ratio distortion that is commonly observed for reporter ion-based quantification approaches. Herein, we present a collision-induced dissociation-cleavable, isobaric acetyl-isoleucine-proline-glycine (Ac-IPG) tag, which conserves the merits of quantifying peptides based on unique fragments while reducing the complexity of the b-ion series compared to conventional fragment ion-based quantification methods thus facilitating data processing. Multiplex labeling is based on selective N-terminal dimethylation followed by derivatization of the ε-amino group of the C-terminal Lys residue of LysC peptides with isobaric Ac-IPG tags having complementary isotope distributions on Pro-Gly and Ac-Ile. Upon fragmentation between Ile and Pro, the resulting y ions, with the neutral loss of Ac-Ile, can be distinguished between the different labeling channels based on different numbers of isotope labels on the Pro-Gly part and thus contain the information for relative quantification, while b ions of different labeling channels have the same m/z values. The proteome quantification capability of this method was demonstrated by triplex labeling of a yeast proteome spiked with bovine serum albumin (BSA) over a 10-fold dynamic range. With the yeast proteins as the background, BSA was detected at ratios of 1.14:5.06:9.78 when spiked at 1:5:10 ratios. The raw mass data is available on the ProteomeXchange with the identifier PXD 018790.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Íons , Marcação por Isótopo , Fragmentos de Peptídeos , Peptídeos , Proteoma
14.
Anal Chem ; 92(11): 7836-7844, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32319746

RESUMO

Isobaric peptide termini labeling (IPTL) is an attractive protein quantification method because it provides more accurate and reliable quantification information than traditional isobaric labeling methods (e.g., TMT and iTRAQ) by making use of the entire fragment-ion series instead of only a single reporter ion. The multiplexing capacity of published IPTL implementations is, however, limited to three. Here, we present a selective maleylation-directed isobaric peptide termini labeling (SMD-IPTL) approach for quantitative proteomics of LysC protein digestion. SMD-IPTL extends the multiplexing capacity to 4-plex with the potential for higher levels of multiplexing using commercially available 13C/15N labeled amino acids. SMD-IPTL is achieved in a one-pot reaction in three consecutive steps: (1) selective maleylation at the N-terminus; (2) labeling at the ε-NH2 group of the C-terminal Lys with isotopically labeled acetyl-alanine; (3) thiol Michael addition of an isotopically labeled acetyl-cysteine at the maleylated N-terminus. The isobarically labeled peptides are fragmented into sets of b- and y-ion clusters upon LC-MS/MS, which convey not only sequence information but also quantitative information for every labeling channel and avoid the issue of ratio distortion observed with reporter-ion-based approaches. We demonstrate the SMD-IPTL approach with a 4-plex labeled sample of bovine serum albumin (BSA) and yeast lysates mixed at different ratios. With the use of SMD-IPTL for labeling and a narrow precursor isolation window of 0.8 Th with an offset of -0.2 Th, accurate ratios were measured across a 10-fold mixing range of BSA in a background of yeast proteome. With the yeast proteins mixed at ratios of 1:5:1:5, BSA was detected at ratios of 0.94:2.46:4.70:9.92 when spiked at 1:2:5:10 ratios with an average standard deviation of peptide ratios of 0.34.


Assuntos
Marcação por Isótopo , Peptídeos/química , Proteoma/análise , Proteínas de Saccharomyces cerevisiae/análise , Soroalbumina Bovina/análise , Animais , Bovinos
15.
Chem Commun (Camb) ; 56(44): 5941-5944, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32347235

RESUMO

Targeted epitope-based mass spectrometry imaging (MSI) utilizes laser cleavable mass-tags bound to targeting moieties for detecting proteins in tissue sections. Our work constitutes the first proof-of-concept of a novel laser desorption ionization (LDI)-MSI strategy using photocleavable Ru(ii) polypyridine complexes as mass-tags for imaging of integrins αvß3 in human cancer tissues.


Assuntos
Neoplasias de Cabeça e Pescoço/metabolismo , Integrina alfaVbeta3/metabolismo , Peptídeos Cíclicos/farmacologia , Piridinas/farmacologia , Rutênio/farmacologia , Humanos , Espectrometria de Massas/métodos , Peptídeos Cíclicos/química , Piridinas/química , Rutênio/química
16.
Adv Exp Med Biol ; 1158: 101-117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31452138

RESUMO

Targeted mass spectrometry in the selected or parallel reaction monitoring (SRM or PRM) mode is a widely used methodology to quantify proteins based on so-called signature or proteotypic peptides. SRM has the advantage of being able to quantify a range of proteins in a single analysis, for example, to measure the level of enzymes comprising a biochemical pathway. In this chapter, we will detail how to set up an SRM assay on the example of the mitochondrial protein succinate dehydrogenase [ubiquinone] flavoprotein subunit (mouse UniProt-code Q8K2B3). First, we will outline the in silico assay design including the choice of peptides based on a range of properties. We will further delineate different quantification strategies and introduce the reader to LC-MS assay development including the selection of the optimal peptide charge state and fragment ions as well as a discussion of the dynamic range of detection. The chapter will close with an application from the area of mitochondrial biology related to the quantification of a set of proteins isolated from mouse liver mitochondria in a study on mitochondrial respiratory flux decline in aging mouse muscle.


Assuntos
Mitocôndrias , Proteômica , Animais , Cromatografia Líquida , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Peptídeos/química , Proteômica/instrumentação , Proteômica/métodos , Espectrometria de Massas em Tandem
17.
J Exp Biol ; 222(Pt 7)2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30862703

RESUMO

Several studies show effects of yolk androgens in avian eggs on the phenotype of the offspring. Yolk hormone concentrations decline strongly within the first few days of incubation. Although early embryonic uptake of yolk androgens is suggested by the presence of radioactivity in the embryo when eggs are injected with radiolabelled androgens, these studies do not verify the chemical identity of radioactive compound(s), although it is known that these androgens can be metabolized substantially. By using stable isotope-labelled testosterone and androstenedione in combination with mass spectrometry, enabling verification of the exact molecular identity of labelled compounds in the embryo, we found that after 5 days of incubation the androgens were not taken up by the embryo. However, their concentrations in the entire yolk albumen homogenates declined strongly, even when corrected for dilution by albumen and water. Our results indicate metabolism of maternal androgens, very likely to 5ß-androstane-3α,17ß-diol, etiocholanolone and their conjugated forms. The results imply that the effects of increased exposure of the embryo to maternal androgens take place either before this early conversion or are mediated by these metabolites with an as yet unknown function, opening new avenues for understanding hormone-mediated maternal effects in vertebrates.


Assuntos
Androstenodiona/metabolismo , Embrião de Galinha/metabolismo , Testosterona/metabolismo , Animais , Isótopos de Carbono , Cromatografia Líquida , Gema de Ovo/química , Espectrometria de Massas em Tandem , Trítio
18.
Bioconjug Chem ; 29(11): 3856-3865, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30380298

RESUMO

Cisplatin occupies a crucial role in the treatment of various malignant tumors. However, its efficacy and applicability are heavily restricted by severe systemic toxicities and drug resistance. Our study exploits the active targeting of supramolecular metallacages to enhance the activity of cisplatin in cancer cells while reducing its toxicity. Thus, Pd2L4 cages (L = ligand) have been conjugated to four integrin ligands with different binding affinity and selectivity. Cage formation and encapsulation of cisplatin was proven by NMR spectroscopy. Upon encapsulation, cisplatin showed increased cytotoxicity in vitro, in melanoma A375 cells overexpressing αvß3 integrins. Moreover, ex vivo studies in tissue slices indicated reduced toxicity toward healthy liver and kidney tissues for cage-encapsulated cisplatin. Analysis of metal content by ICP-MS demonstrated that the encapsulated drug is less accumulated in these organs compared to the "free" cisplatin.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Portadores de Fármacos/metabolismo , Integrina alfaVbeta3/metabolismo , Melanoma/tratamento farmacológico , Estruturas Metalorgânicas/metabolismo , Paládio/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Ligantes , Masculino , Melanoma/metabolismo , Estruturas Metalorgânicas/química , Paládio/química , Ratos Wistar
19.
Anal Bioanal Chem ; 410(23): 5859-5870, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29968103

RESUMO

Lipidomics is a rapidly developing field in modern biomedical research. While LC-MS systems are able to detect most of the known lipid classes in a biological matrix, there is no single technique able to extract all of them simultaneously. In comparison with two-phase extractions, one-phase extraction systems are of particular interest, since they decrease the complexity of the experimental procedure. By using an untargeted lipidomics approach, we explored the differences/similarities between the most commonly used two-phase extraction systems (Folch, Bligh and Dyer, and MTBE) and one of the more recently introduced one-phase extraction systems for lipid analysis based on the MMC solvent mixture (MeOH/MTBE/CHCl3). The four extraction methods were evaluated and thoroughly compared against a pooled extract that qualitatively and quantitatively represents the average of the combined extractions. Our results show that the lipid profile obtained with the MMC system displayed the highest similarity to the pooled extract, indicating that it was most representative of the lipidome in the original sample. Furthermore, it showed better extraction efficiencies for moderate and highly apolar lipid species in comparison with the Folch, Bligh and Dyer, and MTBE extraction systems. Finally, the technical simplicity of the MMC procedure makes this solvent system highly suitable for automated, untargeted lipidomics analysis.


Assuntos
Fracionamento Químico/métodos , Lipídeos/sangue , Lipídeos/isolamento & purificação , Transição de Fase , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Lipídeos/análise , Espectrometria de Massas/métodos , Metabolômica/métodos , Análise Multivariada
20.
Aging Cell ; 17(1)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29120091

RESUMO

Loss of mitochondrial respiratory flux is a hallmark of skeletal muscle aging, contributing to a progressive decline of muscle strength. Endurance exercise alleviates the decrease in respiratory flux, both in humans and in rodents. Here, we dissect the underlying mechanism of mitochondrial flux decline by integrated analysis of the molecular network. Mice were given a lifelong ad libitum low-fat or high-fat sucrose diet and were further divided into sedentary and running-wheel groups. At 6, 12, 18 and 24 months, muscle weight, triglyceride content and mitochondrial respiratory flux were analysed. Subsequently, transcriptome was measured by RNA-Seq and proteome by targeted LC-MS/MS analysis with 13 C-labelled standards. In the sedentary groups, mitochondrial respiratory flux declined with age. Voluntary running protected the mitochondrial respiratory flux until 18 months of age. Beyond this time point, all groups converged. Regulation Analysis of flux, proteome and transcriptome showed that the decline of flux was equally regulated at the proteomic and at the metabolic level, while regulation at the transcriptional level was marginal. Proteomic regulation was most prominent at the beginning and at the end of the pathway, namely at the pyruvate dehydrogenase complex and at the synthesis and transport of ATP. Further proteomic regulation was scattered across the entire pathway, revealing an effective multisite regulation. Finally, reactions regulated at the protein level were highly overlapping between the four experimental groups, suggesting a common, post-transcriptional mechanism of muscle aging.


Assuntos
Envelhecimento/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Animais , Cromatografia Líquida/métodos , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Musculares/metabolismo , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA