Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Sci Transl Med ; 16(729): eadh1334, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198573

RESUMO

The urea cycle enzyme argininosuccinate lyase (ASL) enables the clearance of neurotoxic ammonia and the biosynthesis of arginine. Patients with ASL deficiency present with argininosuccinic aciduria, an inherited metabolic disease with hyperammonemia and a systemic phenotype coinciding with neurocognitive impairment and chronic liver disease. Here, we describe the dysregulation of glutathione biosynthesis and upstream cysteine utilization in ASL-deficient patients and mice using targeted metabolomics and in vivo positron emission tomography (PET) imaging using (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG). Up-regulation of cysteine metabolism contrasted with glutathione depletion and down-regulated antioxidant pathways. To assess hepatic glutathione dysregulation and liver disease, we present [18F]FSPG PET as a noninvasive diagnostic tool to monitor therapeutic response in argininosuccinic aciduria. Human hASL mRNA encapsulated in lipid nanoparticles improved glutathione metabolism and chronic liver disease. In addition, hASL mRNA therapy corrected and rescued the neonatal and adult Asl-deficient mouse phenotypes, respectively, enhancing ureagenesis. These findings provide mechanistic insights in liver glutathione metabolism and support clinical translation of mRNA therapy for argininosuccinic aciduria.


Assuntos
Acidúria Argininossuccínica , Hepatopatias , Adulto , Humanos , Animais , Camundongos , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/terapia , Cisteína , Glutationa , Metabolômica
2.
J Inherit Metab Dis ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044746

RESUMO

Argininosuccinate lyase (ASL) is integral to the urea cycle detoxifying neurotoxic ammonia and the nitric oxide (NO) biosynthesis cycle. Inherited ASL deficiency causes argininosuccinic aciduria (ASA), a rare disease with hyperammonemia and NO deficiency. Patients present with developmental delay, epilepsy and movement disorder, associated with NO-mediated downregulation of central catecholamine biosynthesis. A neurodegenerative phenotype has been proposed in ASA. To better characterise this neurodegenerative phenotype in ASA, we conducted a retrospective study in six paediatric and adult metabolic centres in the UK in 2022. We identified 60 patients and specifically looked for neurodegeneration-related symptoms: movement disorder such as ataxia, tremor and dystonia, hypotonia/fatigue and abnormal behaviour. We analysed neuroimaging with diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) in an individual with ASA with movement disorders. We assessed conventional and DTI MRI alongside single photon emission computer tomography (SPECT) with dopamine analogue radionuclide 123 I-ioflupane, in Asl-deficient mice treated by hASL mRNA with normalised ureagenesis. Movement disorders in ASA appear in the second and third decades of life, becoming more prevalent with ageing and independent from the age of onset of hyperammonemia. Neuroimaging can show abnormal DTI features affecting both grey and white matter, preferentially basal ganglia. ASA mouse model with normalised ureagenesis did not recapitulate these DTI findings and showed normal 123 I-ioflupane SPECT and cerebral dopamine metabolomics. Altogether these findings support the pathophysiology of a late-onset movement disorder with cell-autonomous functional central catecholamine dysregulation but without or limited neurodegeneration of dopaminergic neurons, making these symptoms amenable to targeted therapy.

3.
Hum Gene Ther ; 34(7-8): 273-288, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36927149

RESUMO

The liver is a prime target for in vivo gene therapies using recombinant adeno-associated viral vectors. Multiple clinical trials have been undertaken for this target in the past 15 years; however, we are still to see market approval of the first liver-targeted adeno-associated virus (AAV)-based gene therapy. Inefficient expression of the therapeutic transgene, vector-induced liver toxicity and capsid, and/or transgene-mediated immune responses reported at high vector doses are the main challenges to date. One of the contributing factors to the insufficient clinical outcomes, despite highly encouraging preclinical data, is the lack of robust, biologically and clinically predictive preclinical models. To this end, this study reports findings of a functional evaluation of 6 AAV vectors in 12 preclinical models of the human liver, with the aim to uncover which combination of models is the most relevant for the identification of AAV capsid variant for safe and efficient transgene delivery to primary human hepatocytes. The results, generated by studies in models ranging from immortalized cells, iPSC-derived and primary hepatocytes, and primary human hepatic organoids to in vivo models, increased our understanding of the strengths and weaknesses of each system. This should allow the development of novel gene therapies targeting the human liver.


Assuntos
Dependovirus , Fígado , Humanos , Dependovirus/genética , Fígado/metabolismo , Terapia Genética/métodos , Hepatócitos/metabolismo , Proteínas do Capsídeo/metabolismo , Tropismo , Vetores Genéticos/genética
4.
F1000Res ; 12: 1580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38618017

RESUMO

Background: In academic research and the pharmaceutical industry, in vitro cell lines and in vivo animal models are considered as gold standards in modelling diseases and assessing therapeutic efficacy. However, both models have intrinsic limitations, whilst the use of precision-cut tissue slices can bridge the gap between these mainstream models. Precision-cut tissue slices combine the advantage of high reproducibility, studying all cell sub-types whilst preserving the tissue matrix and extracellular architecture, thereby closely mimicking a mini-organ. This approach can be used to replicate the biological phenotype of liver monogenic diseases using mouse models. Methods: Here, we describe an optimised and easy-to-implement protocol for the culture of sections from mouse livers, enabling its use as a reliable ex-vivo model to assess the therapeutic screening of inherited metabolic diseases. Results: We show that precision-cut liver sections can be a reliable model for recapitulating the biological phenotype of inherited metabolic diseases, exemplified by common urea cycle defects such as citrullinemia type 1 and argininosuccinic aciduria, caused by argininosuccinic synthase (ASS1) and argininosuccinic lyase (ASL) deficiencies respectively. Conclusions: Therapeutic response to gene therapy such as messenger RNA replacement delivered via lipid nanoparticles can be monitored, demonstrating that precision-cut liver sections can be used as a preclinical screening tool to assess therapeutic response and toxicity in monogenic liver diseases.


Assuntos
Hepatopatias , Doenças Metabólicas , Animais , Camundongos , Reprodutibilidade dos Testes , Hepatopatias/genética , Hepatopatias/terapia , Fenótipo
5.
Mol Ther Methods Clin Dev ; 23: 135-146, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34703837

RESUMO

X-linked inherited ornithine transcarbamylase deficiency (OTCD) is the most common disorder affecting the liver-based urea cycle, a pathway enabling detoxification of nitrogen waste and endogenous arginine biosynthesis. Patients develop acute hyperammonemia leading to neurological sequelae or death despite the best-accepted therapy based on ammonia scavengers and protein-restricted diet. Liver transplantation is curative but associated with procedure-related complications and lifelong immunosuppression. Adeno-associated viral (AAV) vectors have demonstrated safety and clinical benefits in a rapidly growing number of clinical trials for inherited metabolic liver diseases. Engineered AAV capsids have shown promising enhanced liver tropism. Here, we conducted a good-laboratory practice-compliant investigational new drug-enabling study to assess the safety of intravenous liver-tropic AAVLK03 gene transfer of a human codon-optimized OTC gene. Juvenile cynomolgus monkeys received vehicle and a low and high dose of vector (2 × 1012 and 2 × 1013 vector genome (vg)/kg, respectively) and were monitored for 26 weeks for in-life safety with sequential liver biopsies at 1 and 13 weeks post-vector administration. Upon completion of monitoring, animals were euthanized to study vector biodistribution, immune responses, and histopathology. The product was well tolerated with no adverse clinical events, predominant hepatic biodistribution, and sustained supra-physiological OTC overexpression. This study supports the clinical deployment of intravenous AAVLK03 for severe OTCD.

6.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941676

RESUMO

Chronic inflammatory diseases like rheumatoid arthritis are characterized by a deficit in fully functional regulatory T cells. DNA-methylation inhibitors have previously been shown to promote regulatory T cell responses and, in the present study, we evaluated their potential to ameliorate chronic and acute animal models of rheumatoid arthritis. Of the drugs tested, decitabine was the most effective, producing a sustained therapeutic effect that was dependent on indoleamine 2,3-dioxygenase (IDO) and was associated with expansion of induced regulatory T cells, particularly at the site of disease activity. Treatment with decitabine also caused apoptosis of Th1 and Th17 cells in active arthritis in a highly selective manner. The molecular basis for this selectivity was shown to be ENT1, a nucleoside transporter, which facilitates intracellular entry of the drug and is up-regulated on effector T cells during active arthritis. It was further shown that short-term treatment with decitabine resulted in the generation of a population of regulatory T cells that were able to suppress arthritis upon adoptive transfer. In summary, a therapeutic approach using an approved drug is described that treats active inflammatory disease effectively and generates robust regulatory T cells with the IDO-dependent capacity to maintain remission.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Decitabina/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Desmetilação do DNA/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/imunologia , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Indução de Remissão , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Th1/citologia , Células Th1/imunologia , Células Th17/citologia , Células Th17/imunologia
7.
Sci Transl Med ; 13(594)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011628

RESUMO

Most inherited neurodegenerative disorders are incurable, and often only palliative treatment is available. Precision medicine has great potential to address this unmet clinical need. We explored this paradigm in dopamine transporter deficiency syndrome (DTDS), caused by biallelic loss-of-function mutations in SLC6A3, encoding the dopamine transporter (DAT). Patients present with early infantile hyperkinesia, severe progressive childhood parkinsonism, and raised cerebrospinal fluid dopamine metabolites. The absence of effective treatments and relentless disease course frequently leads to death in childhood. Using patient-derived induced pluripotent stem cells (iPSCs), we generated a midbrain dopaminergic (mDA) neuron model of DTDS that exhibited marked impairment of DAT activity, apoptotic neurodegeneration associated with TNFα-mediated inflammation, and dopamine toxicity. Partial restoration of DAT activity by the pharmacochaperone pifithrin-µ was mutation-specific. In contrast, lentiviral gene transfer of wild-type human SLC6A3 complementary DNA restored DAT activity and prevented neurodegeneration in all patient-derived mDA lines. To progress toward clinical translation, we used the knockout mouse model of DTDS that recapitulates human disease, exhibiting parkinsonism features, including tremor, bradykinesia, and premature death. Neonatal intracerebroventricular injection of human SLC6A3 using an adeno-associated virus (AAV) vector provided neuronal expression of human DAT, which ameliorated motor phenotype, life span, and neuronal survival in the substantia nigra and striatum, although off-target neurotoxic effects were seen at higher dosage. These were avoided with stereotactic delivery of AAV2.SLC6A3 gene therapy targeted to the midbrain of adult knockout mice, which rescued both motor phenotype and neurodegeneration, suggesting that targeted AAV gene therapy might be effective for patients with DTDS.


Assuntos
Terapia Genética , Células-Tronco Pluripotentes Induzidas , Transtornos Parkinsonianos , Animais , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/terapia , Substância Negra/metabolismo
8.
Cell Commun Signal ; 19(1): 47, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33892745

RESUMO

The use of exosomes in clinical settings is progressively becoming a reality, as clinical trials testing exosomes for diagnostic and therapeutic applications are generating remarkable interest from the scientific community and investors. Exosomes are small extracellular vesicles secreted by all cell types playing intercellular communication roles in health and disease by transferring cellular cargoes such as functional proteins, metabolites and nucleic acids to recipient cells. An in-depth understanding of exosome biology is therefore essential to ensure clinical development of exosome based investigational therapeutic products. Here we summarise the most up-to-date knowkedge about the complex biological journey of exosomes from biogenesis and secretion, transport and uptake to their intracellular signalling. We delineate the major pathways and molecular players that influence each step of exosome physiology, highlighting the routes of interest, which will be of benefit to exosome manipulation and engineering. We highlight the main controversies in the field of exosome research: their adequate definition, characterisation and biogenesis at plasma membrane. We also delineate the most common identified pitfalls affecting exosome research and development. Unravelling exosome physiology is key to their ultimate progression towards clinical applications. Video Abstract.


Assuntos
Exossomos/metabolismo , Espaço Intracelular/metabolismo , Transdução de Sinais , Animais , Transporte Biológico , Humanos , Modelos Biológicos , Distribuição Tecidual
9.
Br J Pharmacol ; 178(12): 2375-2392, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33751579

RESUMO

Exosomes are a subset of extracellular vesicles essential for cell-cell communication in health and disease with the ability to transport nucleic acids, functional proteins and other metabolites. Their clinical use as diagnostic biomarkers and therapeutic carriers has become a major field of research over recent years, generating rapidly expanding scientific interest and financial investment. Their reduced immunogenicity compared to liposomes or viral vectors and their ability to cross major physiological barriers like the blood-brain barrier make them an appealing and innovative option as biomarkers and therapeutic agents. Here, we review the latest clinical developments of exosome biotechnology for diagnostic and therapeutic purposes, including the most recent COVID-19-related exosome-based clinical trials. We present current exosome engineering strategies for optimal clinical safety and efficacy, and assess the technology developed for good manufacturing practice compliant scaling up and storage approaches along with their limitations in pharmaceutical industry.


Assuntos
COVID-19 , Exossomos , Vesículas Extracelulares , Sistemas de Liberação de Medicamentos , Humanos , SARS-CoV-2
10.
Mol Ther Methods Clin Dev ; 20: 357-365, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33553484

RESUMO

Lentiviral (LV) vectors based on human immunodeficiency virus type I (HIV-1) package two copies of their single-stranded RNA into vector particles. Normally, this RNA genome is reverse transcribed into a double-stranded DNA provirus that integrates into the cell genome, providing permanent gene transfer and long-term expression. Integration-deficient LV vectors have been developed to reduce the frequency of genomic integration and thereby limit their persistence in dividing cells. Here, we describe optimization of a reverse-transcriptase-deficient LV vector, which enables direct translation of LV RNA genomes upon cell entry, for transient expression of vector payloads as mRNA without a DNA intermediate. We have engineered a novel LV genome arrangement in which HIV-1 sequences are removed from the 5' end, to enable ribosomal entry from the 5' 7-methylguanylate cap for efficient translation of the vector payload. We have shown that this LV-mediated mRNA delivery platform provides transient transgene expression in vitro and in vivo. This has a potential application in gene and cell therapy scenarios requiring temporary payload expression in cells and tissues that can be targeted with pseudotyped LV vectors.

11.
EMBO Mol Med ; 13(2): e13158, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33369168

RESUMO

Urea cycle disorders (UCD) are inherited defects in clearance of waste nitrogen with high morbidity and mortality. Novel and more effective therapies for UCD are needed. Studies in mice with constitutive activation of autophagy unravelled Beclin-1 as druggable candidate for therapy of hyperammonemia. Next, we investigated efficacy of cell-penetrating autophagy-inducing Tat-Beclin-1 (TB-1) peptide for therapy of the two most common UCD, namely ornithine transcarbamylase (OTC) and argininosuccinate lyase (ASL) deficiencies. TB-1 reduced urinary orotic acid and improved survival under protein-rich diet in spf-ash mice, a model of OTC deficiency (proximal UCD). In AslNeo/Neo mice, a model of ASL deficiency (distal UCD), TB-1 increased ureagenesis, reduced argininosuccinate, and improved survival. Moreover, it alleviated hepatocellular injury and decreased both cytoplasmic and nuclear glycogen accumulation in AslNeo/Neo mice. In conclusion, Beclin-1-dependent activation of autophagy improved biochemical and clinical phenotypes of proximal and distal defects of the urea cycle.


Assuntos
Acidúria Argininossuccínica , Doença da Deficiência de Ornitina Carbomoiltransferase , Distúrbios Congênitos do Ciclo da Ureia , Animais , Autofagia , Proteína Beclina-1/genética , Camundongos
12.
iScience ; 23(12): 101808, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33305175

RESUMO

Explosion of gene therapy approaches for treating rare monogenic and common liver disorders created an urgent need for disease models able to replicate human liver cellular environment. Available models lack 3D liver structure or are unable to survive in long-term culture. We aimed to generate and test a 3D culture system that allows long-term maintenance of human liver cell characteristics. The in vitro whole-organ "Bioreactor grown Artificial Liver Model" (BALM) employs a custom-designed bioreactor for long-term 3D culture of human induced pluripotent stem cells-derived hepatocyte-like cells (hiHEPs) in a mouse decellularized liver scaffold. Adeno-associated viral (AAV) and lentiviral (LV) vectors were introduced by intravascular injection. Substantial AAV and LV transgene expression in the BALM-grown hiHEPs was detected. Measurement of secreted proteins in the media allowed non-invasive monitoring of the system. We demonstrated that humanized whole-organ BALM is a valuable tool to generate pre-clinical data for investigational medicinal products.

13.
Front Immunol ; 11: 106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117260

RESUMO

Approximately 40% of preterm births are preceded by microbial invasion of the intrauterine space; ascent from the vagina being the most common pathway. Within the cervical canal, antimicrobial peptides and proteins (AMPs) are important components of the cervical barrier which help to prevent ascending vaginal infection. We investigated whether expression of the AMP, human ß-defensin-3 (HBD3), in the cervical mucosa of pregnant mice could prevent bacterial ascent from the vagina into the uterine cavity. An adeno-associated virus vector containing both the HBD3 gene and GFP transgene (AAV8 HBD3.GFP) or control AAV8 GFP, was administered intravaginally into E13.5 pregnant mice. Ascending infection was induced at E16.5 using bioluminescent Escherichia coli (E. coli K1 A192PP-lux2). Bioluminescence imaging showed bacterial ascent into the uterine cavity, inflammatory events that led to premature delivery and a reduction in pups born alive, compared with uninfected controls. Interestingly, a significant reduction in uterine bioluminescence in the AAV8 HBD3.GFP-treated mice was observed 24 h post-E. coli infection, compared to AAV8 GFP treated mice, signifying reduced bacterial ascent in AAV8 HBD3.GFP-treated mice. Furthermore, there was a significant increase in the number of living pups in AAV HBD3.GFP-treated mice. We propose that HBD3 may be a potential candidate for augmenting cervical innate immunity to prevent ascending infection-related preterm birth and its associated neonatal consequences.


Assuntos
Colo do Útero/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli , Técnicas de Transferência de Genes , Complicações Infecciosas na Gravidez/imunologia , Nascimento Prematuro/imunologia , Nascimento Prematuro/microbiologia , Infecções do Sistema Genital/imunologia , beta-Defensinas/genética , Animais , Animais Recém-Nascidos , Colo do Útero/metabolismo , Colo do Útero/microbiologia , Modelos Animais de Doenças , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Feminino , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Complicações Infecciosas na Gravidez/prevenção & controle , Nascimento Prematuro/prevenção & controle , Infecções do Sistema Genital/microbiologia , Vagina/metabolismo , beta-Defensinas/metabolismo
14.
15.
Sci Rep ; 10(1): 2121, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034258

RESUMO

We have previously designed a library of lentiviral vectors to generate somatic-transgenic rodents to monitor signalling pathways in diseased organs using whole-body bioluminescence imaging, in conscious, freely moving rodents. We have now expanded this technology to adeno-associated viral vectors. We first explored bio-distribution by assessing GFP expression after neonatal intravenous delivery of AAV8. We observed widespread gene expression in, central and peripheral nervous system, liver, kidney and skeletal muscle. Next, we selected a constitutive SFFV promoter and NFκB binding sequence for bioluminescence and biosensor evaluation. An intravenous injection of AAV8 containing firefly luciferase and eGFP under transcriptional control of either element resulted in strong and persistent widespread luciferase expression. A single dose of LPS-induced a 10-fold increase in luciferase expression in AAV8-NFκB mice and immunohistochemistry revealed GFP expression in cells of astrocytic and neuronal morphology. Importantly, whole-body bioluminescence persisted up to 240 days. We have validated a novel biosensor technology in an AAV system by using an NFκB response element and revealed its potential to monitor signalling pathway in a non-invasive manner in a model of LPS-induced inflammation. This technology complements existing germline-transgenic models and may be applicable to other rodent disease models.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Camundongos Transgênicos/genética , Animais , Técnicas Biossensoriais/métodos , Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Inflamação/genética , Luciferases de Vaga-Lume/genética , Camundongos , NF-kappa B/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Vírus Formadores de Foco no Baço/genética , Transcrição Gênica/genética
16.
Cell Death Differ ; 27(5): 1588-1603, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31685979

RESUMO

Heterozygous mutations of the lysosomal enzyme glucocerebrosidase (GBA1) represent the major genetic risk for Parkinson's disease (PD), while homozygous GBA1 mutations cause Gaucher disease, a lysosomal storage disorder, which may involve severe neurodegeneration. We have previously demonstrated impaired autophagy and proteasomal degradation pathways and mitochondrial dysfunction in neurons from GBA1 knockout (gba1-/-) mice. We now show that stimulation with physiological glutamate concentrations causes pathological [Ca2+]c responses and delayed calcium deregulation, collapse of mitochondrial membrane potential and an irreversible fall in the ATP/ADP ratio. Mitochondrial Ca2+ uptake was reduced in gba1-/- cells as was expression of the mitochondrial calcium uniporter. The rate of free radical generation was increased in gba1-/- neurons. Behavior of gba1+/- neurons was similar to gba1-/- in terms of all variables, consistent with a contribution of these mechanisms to the pathogenesis of PD. These data signpost reduced bioenergetic capacity and [Ca2+]c dysregulation as mechanisms driving neurodegeneration.


Assuntos
Cálcio/metabolismo , Metabolismo Energético , Glucosilceramidase/deficiência , Neurônios/patologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/patologia , Radicais Livres/metabolismo , Glucosilceramidase/metabolismo , Ácido Glutâmico/toxicidade , Homeostase/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Receptores de Glutamato/metabolismo
17.
J Mother Child ; 24(2): 53-64, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33554501

RESUMO

Over the last two decades, gene therapy has been successfully translated to many rare diseases. The number of clinical trials is rapidly expanding and some gene therapy products have now received market authorisation in the western world. Inherited metabolic diseases (IMD) are orphan diseases frequently associated with a severe debilitating phenotype with limited therapeutic perspective. Gene therapy is progressively becoming a disease-changing therapeutic option for these patients. In this review, we aim to summarise the development of this emerging field detailing the main gene therapy strategies, routes of administration, viral and non-viral vectors and gene editing tools. We discuss the respective advantages and pitfalls of these gene therapy strategies and review their application in IMD, providing examples of clinical trials with lentiviral or adeno-associated viral gene therapy vectors in rare diseases. The rapid development of the field and implementation of gene therapy as a realistic therapeutic option for various IMD in a short term also require a good knowledge and understanding of these technologies from physicians to counsel the patients at best.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Doenças Metabólicas/genética , Doenças Metabólicas/terapia , Doenças Raras/genética , Doenças Raras/terapia , Humanos
18.
Proc Natl Acad Sci U S A ; 116(43): 21666-21672, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31597740

RESUMO

Regulatory T (Treg) cells expressing the transcription factor Foxp3 play an important role in maintaining immune homeostasis. Chronic inflammation is associated with reduced Foxp3 expression, function, and loss of phenotypic stability. Previous studies have established the importance of TNF receptor 2 (TNFR2) in the generation and/or activation of Treg cells. In this study, we assess the importance of TNFR2 in healthy mice and under inflammatory conditions. Our findings reveal that, in health, TNFR2 is important not only for the generation of Treg cells, but also for regulating their functional activity. We also show that TNFR2 maintains Foxp3 expression in Treg cells by restricting DNA methylation at the Foxp3 promoter. In inflammation, loss of TNFR2 results in increased severity and chronicity of experimental arthritis, reduced total numbers of Treg cells, reduced accumulation of Treg cells in inflamed joints, and loss of inhibitory activity. In addition, we demonstrate that, under inflammatory conditions, loss of TNFR2 causes Treg cells to adopt a proinflammatory Th17-like phenotype. It was concluded that TNFR2 signaling is required to enable Treg cells to promote resolution of inflammation and prevent them from undergoing dedifferentiation. Consequently, TNFR2-specific agonists or TNF1-specific antagonists may be useful in the treatment of autoimmune disease.


Assuntos
Doenças Autoimunes/imunologia , Metilação de DNA/genética , Fatores de Transcrição Forkhead/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Regiões Promotoras Genéticas/genética
19.
Hum Gene Ther ; 30(1): 79-87, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30027761

RESUMO

Recombinant adeno-associated virus (rAAV) vectors are a promising platform for in vivo gene therapy. The presence of neutralizing antibodies (Nab) against AAV capsids decreases cell transduction efficiency and is a common exclusion criterion for participation in clinical trials. Novel engineered capsids are being generated to improve gene delivery to the target cells and facilitate success of clinical trials; however, the prevalence of antibodies against such capsids remains largely unknown. We therefore assessed the seroprevalence of antibodies against a novel synthetic liver-tropic capsid AAV-LK03. We measured seroprevalence of immunoglobulin (Ig)G (i.e., neutralizing and nonneutralizing) antibodies and Nab to AAV-LK03 in a cohort of 323 UK patients (including 260 pediatric) and 52 juvenile rhesus macaques. We also performed comparative analysis of seroprevalence of Nab against wild-type AAV8 and AAV3B capsids. Overall IgG seroprevalence for AAV-LK03 was 39% in human samples. The titer increased with age. Prevalence of Nab was 23%, 35%, and 18% for AAV-LK03, AAV3B, and AAV8, respectively, with the lowest seroprevalence between 3 and 17 years of age for all serotypes. Presence of Nab against AAV-LK03 decreased from 36% in the youngest cohort (birth to 6 months) to 7% in older primary school-age children (9-11 years) and then progressively increased to 54% in late adulthood. Cross-reactivity between serotypes was >60%. Nab seroprevalence in macaques was 62%, 85%, and 40% for AAV-LK03, AAV3B, and AAV8, respectively. When planning for AAV gene therapy clinical trials, knowing the seropositivity of the target population is critical. In the population studied, AAV seroprevalence for AAV serotypes tested was low. However, high cross-reactivity between AAV serotypes remains a barrier for re-injection. Shifts in Nab seroprevalence during the first decade need to be confirmed by longitudinal studies. This possibility suggests that pediatric patients could respond differently to AAV therapy according to age. If late childhood is an ideal age window, intervention at an early age when maternal Nab levels are high may be challenging. Nab-positive children excluded from trials could be rescreened for eligibility at regular intervals because this status may change.


Assuntos
Anticorpos Antivirais/imunologia , Dependovirus/imunologia , Vetores Genéticos/efeitos adversos , Estudos Soroepidemiológicos , Adolescente , Anticorpos Neutralizantes , Anticorpos Antivirais/sangue , Capsídeo/imunologia , Criança , Pré-Escolar , Reações Cruzadas , Dependovirus/classificação , Dependovirus/genética , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Humanos , Lactente , Recém-Nascido , Masculino , Vigilância da População , Fatores Sexuais , Transdução Genética , Reino Unido/epidemiologia
20.
Nat Commun ; 9(1): 3505, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158522

RESUMO

Argininosuccinate lyase (ASL) belongs to the hepatic urea cycle detoxifying ammonia, and the citrulline-nitric oxide (NO) cycle producing NO. ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia, multiorgan disease and neurocognitive impairment despite treatment aiming to normalise ammonaemia without considering NO imbalance. Here we show that cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress independent of hyperammonaemia. Intravenous injection of AAV8 vector into adult or neonatal ASL-deficient mice demonstrates long-term correction of the hepatic urea cycle and the cerebral citrulline-NO cycle, respectively. Cerebral disease persists if ammonaemia only is normalised but is dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This correlates with behavioural improvement and reduced cortical cell death. Thus, neuronal oxidative/nitrosative stress is a distinct pathophysiological mechanism from hyperammonaemia. Disease amelioration by simultaneous brain and liver gene transfer with one vector, to treat both metabolic pathways, provides new hope for hepatocerebral metabolic diseases.


Assuntos
Argininossuccinato Liase/metabolismo , Acidúria Argininossuccínica/metabolismo , Acidúria Argininossuccínica/terapia , Animais , Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Encefalopatias/genética , Encefalopatias/metabolismo , Encefalopatias/terapia , Citrulina/metabolismo , Terapia Genética , Hiperamonemia/genética , Hiperamonemia/metabolismo , Hiperamonemia/terapia , Fígado/citologia , Camundongos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Estresse Nitrosativo/genética , Estresse Nitrosativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA