Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Matrix Biol ; 128: 79-92, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485100

RESUMO

Keloid refers to a fibroproliferative disorder characterized by an accumulation of extracellular matrix (ECM) components at the dermis level, overgrowth beyond initial wound, and formation of tumor-like nodule areas. Treating keloid is still an unmet clinical need and the lack of an efficient therapy is clearly related to limited knowledge about keloid etiology, despite the growing interest of the scientific community in this pathology. In past decades, keloids were often studied in vitro through the sole prism of fibroblasts considered as the major effector of ECM deposition. Nevertheless, development of keloids results from cross-interactions of keloid fibroblasts (KFs) and their surrounding microenvironment, including immune cells such as macrophages. Our study aimed to evaluate the effect of M1 and M2 monocyte-derived macrophages on KFs in vitro. We focused on the effects of the macrophage secretome on fibrosis-related criteria in KFs, including proliferation, migration, differentiation, and ECM synthesis. First, we demonstrated that M2-like macrophages enhanced the fibrogenic profile of KFs in culture. Then, we surprisingly founded that M1-like macrophages can have an anti-fibrogenic effect on KFs, even in a pro-fibrotic environment. These results demonstrate, for the first time, that M1 and M2 macrophage subsets differentially impact the fibrotic fate of KFs in vitro, and suggest that restoring the M1/M2 balance to favor M1 in keloids could be an efficient therapeutic lever to prevent or treat keloid fibrosis.


Assuntos
Queloide , Humanos , Queloide/genética , Queloide/patologia , Fibroblastos/patologia , Proliferação de Células , Células Cultivadas
2.
J Neuroinflammation ; 20(1): 307, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124095

RESUMO

BACKGROUND: Reinstating inflammation resolution represents an innovative concept to regain inflammation control in diseases marked by chronic inflammation. While most therapeutics target inflammatory molecules and inflammatory effector cells and mediators, targeting macrophages to initiate inflammation resolution to control neuroinflammation has not yet been attempted. Resolution-phase macrophages are critical in the resolution process to regain tissue homeostasis, and are programmed through the presence and elimination of apoptotic leukocytes. Hence, inducing resolution-phase macrophages might represent an innovative therapeutic approach to control and terminate dysregulated neuroinflammation. METHODS: Here, we investigated if the factors released by in vitro induced resolution-phase macrophages (their secretome) are able to therapeutically reprogram macrophages to control neuroinflammation in the model of experimental autoimmune encephalomyelitis (EAE). RESULTS: We found that injection of the pro-resolutive secretome reduced demyelination and decreased inflammatory cell infiltration in the CNS, notably through the in vivo reprogramming of macrophages at the epigenetic level. Adoptive transfer experiments with in vivo or in vitro reprogrammed macrophages using such pro-resolutive secretome confirmed the stability and transferability of this acquired therapeutic activity. CONCLUSIONS: Overall, our data confirm the therapeutic activity of a pro-resolution secretome in the treatment of ongoing CNS inflammation, via the epigenetic reprogramming of macrophages and open with that a new therapeutic avenue for diseases marked by neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Doenças Neuroinflamatórias , Macrófagos , Inflamação , Leucócitos
3.
Front Immunol ; 13: 1021413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389733

RESUMO

Several chronic inflammatory diseases are associated with non-resolving inflammation. Conventional anti-inflammatory drugs fail to completely cure these diseases. Resolution pharmacology is a new therapeutic approach based on the use of pro-resolving mediators that accelerate the resolution phase of inflammation by targeting the productive phase of inflammation. Indeed, pro-resolving mediators prevent leukocyte recruitment and induce apoptosis of accumulated leukocytes. This approach is now called resolution therapy with the introduction of complex biological drugs and cell-based therapies. The main objective of resolution therapy is to specifically reduce the duration of the resolution phase to accelerate the return to homeostasis. Under physiological conditions, macrophages play a critical role in the resolution of inflammation. Indeed, after the removal of apoptotic cells (a process called efferocytosis), macrophages display anti-inflammatory reprogramming and subsequently secrete multiple pro-resolving factors. These factors can be used as resolution therapy. Here, we review the different mechanisms leading to anti-inflammatory reprogramming of macrophages after efferocytosis and the pro-resolving factors released by these efferocytic macrophages. We classify these mechanisms in three different categories: macrophage reprogramming induced by apoptotic cell-derived factors, by molecules expressed by apoptotic cells (i.e., "eat-me" signals), and induced by the digestion of apoptotic cell-derived materials. We also evoke that macrophage reprogramming may result from cooperative mechanisms, for instance, implicating the apoptotic cell-induced microenvironment (including cellular metabolites, specific cytokines or immune cells). Then, we describe a new drug candidate belonging to this resolution therapy. This candidate, called SuperMApo, corresponds to the secretome of efferocytic macrophages. We discuss its production, the pro-resolving factors present in this drug, as well as the results obtained in experimental models of chronic (e.g., arthritis, colitis) and acute (e.g., peritonitis or xenogeneic graft-versus-host disease) inflammatory diseases.


Assuntos
Inflamação , Macrófagos , Humanos , Fagocitose , Contagem de Leucócitos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
5.
Front Immunol ; 12: 768133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868025

RESUMO

Both the initiation and the resolution of inflammatory responses are governed by the sequential activation, migration, and control/suppression of immune cells at the site of injury. Bioactive lipids play a major role in the fine-tuning of this dynamic process in a timely manner. During inflammation and its resolution, polymorphonuclear cells (PMNs) and macrophages switch from producing pro-inflammatory prostaglandins and leukotrienes to specialized pro-resolving lipid mediators (SPMs), namely, lipoxins, resolvins, protectins, and maresins, which are operative at the local level to limit further inflammation and tissue injury and restore homeostasis. Accumulating evidences expand now the role and actions of these lipid mediators from innate to adaptive immunity. In particular, SPMs have been shown to contribute to the control of chronic inflammation, and alterations in their production and/or function have been associated with the persistence of several pathological conditions, including autoimmunity, in human and experimental models. In this review, we focus on the impact of pro-resolving lipids on T cells through their ability to modulate T-cell responses. In particular, the effects of the different families of SPMs to restrain effector T-cell functions while promoting regulatory T cells will be reviewed, along with the underlying mechanisms. Furthermore, the emerging concept of SPMs as new biological markers for disease diagnostic and progression and as putative therapeutic tools to regulate the development and magnitude of inflammatory and autoimmune diseases is discussed.


Assuntos
Eicosanoides/farmacologia , Agentes de Imunomodulação/farmacologia , Mediadores da Inflamação/farmacologia , Lipoxinas/farmacologia , Linfócitos T/efeitos dos fármacos , Reprogramação Celular , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Humanos , Mediadores da Inflamação/uso terapêutico , Linfócitos T/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
6.
Front Immunol ; 12: 630170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717160

RESUMO

Rheumatoid arthritis (RA) is a chronic immune-mediated disease managed by conventional synthetic drugs, such as methotrexate (MTX), and targeted drugs including biological agents. Cell-based therapeutic approaches are currently developed in RA, mainly mesenchymal stroma cell-based approaches. Early-stage apoptotic cells possess direct and indirect anti-inflammatory properties. During the elimination of dying cells (a process called efferocytosis), specific mechanisms operate to control immune responses. There are compelling evidences in experimental models of arthritis indicating that apoptotic cell administration may benefit joint inflammation, and may even have therapeutic effects on arthritis. Additionally, it has been demonstrated that apoptotic cells could be administered with standard treatments of RA, such as MTX or TNF inhibitors (TNFi), given even a synergistic response with TNFi. Interestingly, apoptotic cell infusion has been successfully experienced to prevent acute graft-vs.-host disease after hematopoietic cell transplantation in patients with hematologic malignancies, with a good safety profile. In this mini-review, the apoptotic cell-based therapy development in arthritis is discussed, as well as its transfer in the short-term to an innovative treatment for patients with RA. The use of apoptotic cell-derived factors, including secretome or phosphatidylserine-containing liposomes, in RA are also discussed.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artrite Reumatoide/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Inflamação/terapia , Lipossomos/uso terapêutico , Fosfatidilserinas/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Animais , Antirreumáticos/uso terapêutico , Apoptose , Humanos , Imunomodulação , Lipossomos/metabolismo , Fosfatidilserinas/metabolismo
7.
Front Immunol ; 12: 754475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003066

RESUMO

Nonresolving inflammation is a critical driver of several chronic inflammatory diseases, including inflammatory bowel diseases (IBD). This unresolved inflammation may result from the persistence of an initiating stimulus or from the alteration of the resolution phase of inflammation. Elimination of apoptotic cells by macrophages (a process called efferocytosis) is a critical step in the resolution phase of inflammation. Efferocytosis participates in macrophage reprogramming and favors the release of numerous pro-resolving factors. These pro-resolving factors exert therapeutic effects in experimental autoimmune arthritis. Here, we propose to evaluate the efficacy of pro-resolving factors produced by macrophages after efferocytosis, a secretome called SuperMApo, in two IBD models, namely dextran sodium sulfate (DSS)-induced and T cell transfer-induced colitis. Reintroducing these pro-resolving factors was sufficient to decrease clinical, endoscopic and histological colitis scores in ongoing naive T cell-transfer-induced colitis and in DSS-induced colitis. Mouse primary fibroblasts isolated from the colon demonstrated enhanced healing properties in the presence of SuperMApo, as attested by their increased migratory, proliferative and contractive properties. This was confirmed by the use of human fibroblasts isolated from patients with IBD. Exposure of an intestinal epithelial cell (IEC) line to these pro-resolving factors increased their proliferative properties and IEC acquired the capacity to capture apoptotic cells. The improvement of wound healing properties induced by SuperMApo was confirmed in vivo in a biopsy forceps-wound colonic mucosa model. Further in vivo analysis in naive T cell transfer-induced colitis model demonstrated an improvement of intestinal barrier permeability after administration of SuperMApo, an intestinal cell proliferation and an increase of α-SMA expression by fibroblasts, as well as a reduction of the transcript coding for fibronectin (Fn1). Finally, we identified TGF-ß, IGF-I and VEGF among SuperMApo as necessary to favor mucosal healing and confirmed their role both in vitro (using neutralizing antibodies) and in vivo by depleting these factors from efferocytic macrophage secretome using antibody-coated microbeads. These growth factors only explained some of the beneficial effects induced by factors released by efferocytic macrophages. Overall, the administration of pro-resolving factors released by efferocytic macrophages limits intestinal inflammation and enhance tissue repair, which represents an innovative treatment of IBD.


Assuntos
Fatores Biológicos/fisiologia , Citofagocitose/fisiologia , Fibroblastos/fisiologia , Doenças Inflamatórias Intestinais/imunologia , Macrófagos/fisiologia , Cicatrização/fisiologia , Actinas/biossíntese , Actinas/genética , Animais , Fatores Biológicos/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Colite/induzido quimicamente , Colite/etiologia , Colite/imunologia , Proteínas de Ligação a DNA/deficiência , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Feminino , Fibronectinas/biossíntese , Fibronectinas/genética , Humanos , Doenças Inflamatórias Intestinais/fisiopatologia , Doenças Inflamatórias Intestinais/terapia , Mucosa Intestinal/citologia , Mucosa Intestinal/lesões , Transfusão de Linfócitos/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organismos Livres de Patógenos Específicos
8.
Front Immunol ; 12: 812171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35116038

RESUMO

Cancers are consequences of cellular dysfunction leading to an aberrant cellular multiplication and proliferation, subsequently yielding metastasis formation. Inflammatory reaction, with immune cell recruitment, is the main defense against precancerous lesions. However, an inflammatory environment also favors cancer cell progression, with cancer cell evasion from immune surveillance, leading to cancer development. Current therapeutic strategies enhance this natural immune response in order to restore immunosurveillance. The variety of these strategies is a predominant source of inflammatory mediators used by cancer cells to grow, differentiate, and migrate, therefore encouraging metastasis formation. For this reason, during cancer progression, limiting inflammation appears to be an innovative strategy to avoid the escape of cancer cells and potentially enhance the efficacy of antitumor therapies. Thus, this study aims to investigate the impact of administering pro-resolving factors (SuperMApo® drug candidate), which are inducers of inflammation resolution, in the framework of cancer treatment. We have observed that administering pro-resolving mediators issued from apoptotic cell efferocytosis by macrophages controlled peritoneal cancer progression by limiting cancer cell dissemination to the blood and mesenteric lymph nodes. This observation has been linked to an increase of macrophage mobilization in both peritoneal cavity and mesenteric lymph nodes. This control is associated to a restricted immunosuppressive myeloid cell circulation and to an IFN-γ-specific anti-tumor T-cell response. Altogether, these results suggest that administering proresolving factors could provide a new additional therapeutic alternative to control cancer progression.


Assuntos
Citotoxicidade Imunológica , Imunidade , Neoplasias/imunologia , Neoplasias/patologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Biomarcadores , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Camundongos , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
9.
J Transl Med ; 17(1): 312, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533744

RESUMO

BACKGROUND: Despite major advances in rheumatoid arthritis outcome, not all patients achieve remission, and there is still an unmet need for new therapeutic approaches. This study aimed at evaluating in a pre-clinical murine model the efficacy of extracorporeal photopheresis (ECP) in the treatment of rheumatoid arthritis, and to provide a relevant study model for dissecting ECP mechanism of action in autoimmune diseases. METHODS: DBA/1 mice were immunized by subcutaneous injection of bovine collagen type II, in order to initiate the development of collagen-induced arthritis (CIA). Arthritic mice received 3 ECP treatments every other day, with psoralen + UVA-treated (PUVA) spleen cells obtained from arthritic mice. Arthritis score was measured, and immune cell subsets were monitored. RESULTS: ECP-treated mice recovered from arthritis as evidenced by a decreasing arthritic score over time. Significant decrease in the frequency of Th17 cells in the spleen of treated mice was observed. Interestingly, while PUVA-treated spleen cells from healthy mouse had no effect, PUVA-treated arthritic mouse derived-spleen cells were able to induce control of arthritis development. CONCLUSIONS: Our results demonstrate that ECP can control arthritis in CIA-mice, and clarifies ECP mechanisms of action, showing ECP efficacy and Th17 decrease only when arthritogenic T cells are contained within the treated sample. These data represent a pre-clinical proof of concept supporting the use of ECP in the treatment of RA in Human.


Assuntos
Artrite Reumatoide/radioterapia , Fotoferese , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Progressão da Doença , Masculino , Camundongos Endogâmicos DBA , Células Th17/imunologia , Resultado do Tratamento
10.
Front Immunol ; 9: 2586, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30542342

RESUMO

Unresolved inflammation is a common feature in the pathogenesis of chronic inflammatory/autoimmune diseases. The factors produced by macrophages eliminating apoptotic cells during resolution are crucial to terminate inflammation, and for subsequent tissue healing. We demonstrated here that the factors produced by macrophages eliminating apoptotic cells were sufficient to reboot the resolution of inflammation in vivo, and thus definitively terminated ongoing chronic inflammation. These factors were called SuperMApo and revealed pro-resolutive properties and accelerated acute inflammation resolution, as attested by both increased phagocytic capacities of macrophages and enhanced thioglycollate-induced peritonitis resolution. Activated antigen-presenting cells exposed to SuperMApo accelerated their return to homeostasis and demonstrated pro-regulatory T cell properties. In mice with ongoing collagen-induced arthritis, SuperMApo injection resolved and definitively terminated chronic inflammation. The same pro-resolving properties were observed in human settings in addition to xenogeneic colitis and graft-vs.-host disease modulation, highlighting SuperMApo as a new therapeutic opportunity to circumvent inflammatory diseases.


Assuntos
Apoptose/imunologia , Inflamação/imunologia , Macrófagos Peritoneais/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Colite/imunologia , Feminino , Homeostase/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Peritonite/imunologia , Fagocitose/imunologia , Linfócitos T Reguladores/imunologia
11.
Front Immunol ; 8: 1191, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29062314

RESUMO

Early-stage apoptotic cells possess immunomodulatory properties. Proper apoptotic cell clearance during homeostasis has been shown to limit subsequent immune responses. Based on these observations, early-stage apoptotic cell infusion has been used to prevent unwanted inflammatory responses in different experimental models of autoimmune diseases or transplantation. Moreover, this approach has been shown to be feasible without any toxicity in patients undergoing allogeneic hematopoietic cell transplantation to prevent graft-versus-host disease. However, whether early-stage apoptotic cell infusion can be used to treat ongoing inflammatory disorders has not been reported extensively. Recently, we have provided evidence that early-stage apoptotic cell infusion is able to control, at least transiently, ongoing collagen-induced arthritis. This beneficial therapeutic effect is associated with the modulation of antigen-presenting cell functions mainly of macrophages and plasmacytoid dendritic cells, as well as the induction of collagen-specific regulatory CD4+ T cells (Treg). Furthermore, the efficacy of this approach is not altered by the association with two standard treatments of rheumatoid arthritis (RA), methotrexate and tumor necrosis factor (TNF) inhibition. Here, in the light of these observations and recent data of the literature, we discuss the mechanisms of early-stage apoptotic cell infusion and how this therapeutic approach can be transposed to patients with RA.

12.
F1000Res ; 6: 456, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28580131

RESUMO

There are more and more data concerning the role of cellular metabolism in innate immune cells, such as macrophages or conventional dendritic cells. However, few data are available currently concerning plasmacytoid dendritic cells (PDC), another type of innate immune cells. These cells are the main type I interferon (IFN) producing cells, but they also secrete other pro-inflammatory cytokines (e.g., tumor necrosis factor or interleukin [IL]-6) or immunomodulatory factors (e.g., IL-10 or transforming growth factor-ß). Through these functions, PDC participate in antimicrobial responses or maintenance of immune tolerance, and have been implicated in the pathophysiology of several autoimmune diseases, as well as in tumor immune escape mechanisms. Recent data support the idea that the glycolytic pathway (or glycolysis), as well as lipid metabolism (including both cholesterol and fatty acid metabolism) may impact some innate immune functions of PDC or may be involved in these functions after Toll-like receptor (TLR) 7/9 triggering. The kinetics of glycolysis after TLR7/9 triggering may differ between human and murine PDC. In mouse PDC, metabolism changes promoted by TLR7/9 activation may depend on an autocrine/paracrine loop, implicating type I IFN and its receptor IFNAR. This could explain a delayed glycolysis in mouse PDC. Moreover, PDC functions can be modulated by the metabolism of cholesterol and fatty acids. This may occur via the production of lipid ligands that activate nuclear receptors (e.g., liver X receptor [LXR]) in PDC or through limiting intracellular cholesterol pool size (by statin or LXR agonist treatment) in these cells. Finally, lipid-activated nuclear receptors (i.e., LXR or peroxisome proliferator activated receptor) may also directly interact with pro-inflammatory transcription factors, such as NF-κB. Here, we discuss how glycolysis and lipid metabolism may modulate PDC functions and how this may be harnessed in pathological situations where PDC play a detrimental role.

13.
Blood ; 128(23): 2694-2707, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27702801

RESUMO

Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate-binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach.


Assuntos
Antineoplásicos/farmacologia , Colesterol/metabolismo , Células Dendríticas/metabolismo , Receptores X do Fígado/agonistas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/patologia , Feminino , Humanos , Interleucina-3/metabolismo , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT5/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Arthritis Res Ther ; 18(1): 184, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27516061

RESUMO

BACKGROUND: Apoptotic cell-based therapies have been proposed to treat chronic inflammatory diseases. The aim of this study was to investigate the effect of intravenous (i.v.) apoptotic cell infusion in ongoing collagen-induced arthritis (CIA) and the interaction of this therapy with other treatments used in rheumatoid arthritis (RA), including methotrexate (MTX) or anti-TNF therapy. METHODS: The effects of i.v. apoptotic cell infusion were evaluated in a CIA mouse model in DBA/1 mice immunized with bovine type II collagen. The number and functions of antigen-presenting cells (APC), regulatory CD4(+) T cells (Treg), and circulating anti-collagen auto-antibodies were analyzed in CIA mice. RESULTS: Treatment of arthritic mice with i.v. apoptotic cell infusion significantly reduced the arthritis clinical score. This therapeutic approach modified T cell responses against the collagen auto-antigen with selective induction of collagen-specific Treg. In addition, we observed that APC from apoptotic-cell-treated animals were resistant to toll-like receptor ligand activation and favored ex vivo Treg induction, indicating APC reprogramming. Apoptotic cell injection-induced arthritis modulation was dependent on transforming growth factor (TGF)-ß, as neutralizing anti-TGF-ß antibody prevented the effects of apoptotic cells. Methotrexate did not interfere, while anti-TNF therapy was synergic with apoptotic-cell-based therapy. CONCLUSION: Overall, our data demonstrate that apoptotic-cell-based therapy is efficient in treating ongoing CIA, compatible with current RA treatments, and needs to be evaluated in humans in the treatment of RA.


Assuntos
Apoptose/imunologia , Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Timócitos/transplante , Animais , Antirreumáticos/farmacologia , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Feminino , Metotrexato/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Fator de Necrose Tumoral alfa/antagonistas & inibidores
15.
J Immunol ; 197(5): 1672-82, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27448589

RESUMO

Regulation of the inflammatory response involves the control of dendritic cell survival. To our knowledge, nothing is known about the survival of plasmacytoid dendritic cells (pDC) in such situation. pDC are specialized in type I IFN (IFN-I) secretion to control viral infections, and IFN-I also negatively regulate pDC survival during the course of viral infections. In this study, we asked about pDC behavior in the setting of virus-free inflammation. We report that pDC survival was profoundly reduced during different nonviral inflammatory situations in the mouse, through a mechanism independent of IFN-I and TLR signaling. Indeed, we demonstrated that during inflammation, CD8(+) T cells induced pDC apoptosis through the perforin pathway. The data suggest, therefore, that pDC have to be turned down during ongoing acute inflammation to not initiate autoimmunity. Manipulating CD8(+) T cell response may therefore represent a new therapeutic opportunity for the treatment of pDC-associated autoimmune diseases, such as lupus or psoriasis.


Assuntos
Apoptose , Linfócitos T CD8-Positivos/imunologia , Sobrevivência Celular , Células Dendríticas/patologia , Perforina/metabolismo , Animais , Autoimunidade , Linfócitos T CD8-Positivos/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/imunologia , Inflamação/imunologia , Interferon-alfa/imunologia , Interferon-alfa/metabolismo , Camundongos , Perforina/imunologia , Receptor 7 Toll-Like/metabolismo
17.
Stem Cells ; 34(6): 1464-73, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27018198

RESUMO

The objectives of this review are to summarize the experimental data obtained using apoptotic cell-based therapies, and then to discuss future clinical developments. Indeed, apoptotic cells exhibit immunomodulatory properties that are reviewed here by focusing on more recent mechanisms. These immunomodulatory mechanisms are in particular linked to the clearance of apoptotic cells (called also efferocytosis) by phagocytes, such as macrophages, and the induction of regulatory T cells. Thus, apoptotic cell-based therapies have been used to prevent or treat experimental inflammatory diseases. Based on these studies, we have identified critical steps to design future clinical trials. This includes: the administration route, the number and schedule of administration, the appropriate apoptotic cell type to be used, as well as the apoptotic signal. We also have analyzed the clinical relevancy of apoptotic-cell-based therapies in experimental models. Additional experimental data are required concerning the treatment of inflammatory diseases (excepted for sepsis) before considering future clinical trials. In contrast, apoptotic cells have been shown to favor engraftment and to reduce acute graft-versus-host disease (GvHD) in different relevant models of transplantation. This has led to the conduct of a phase 1/2a clinical trial to alleviate GvHD. The absence of toxic effects obtained in this trial may support the development of other clinical studies based on this new cell therapy. Stem Cells 2016;34:1464-1473.


Assuntos
Apoptose , Terapia Baseada em Transplante de Células e Tecidos , Ensaios Clínicos como Assunto , Animais , Humanos , Imunomodulação , Modelos Biológicos
18.
Haematologica ; 101(3): e72-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26635040

Assuntos
Plaquetas/imunologia , Micropartículas Derivadas de Células/imunologia , Células Dendríticas/imunologia , Receptores X do Fígado/imunologia , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/imunologia , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/imunologia , Benzoatos/farmacologia , Benzilaminas/farmacologia , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Micropartículas Derivadas de Células/química , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Regulação da Expressão Gênica , Humanos , Hidrocarbonetos Fluorados/farmacologia , Hidroxicolesteróis/farmacologia , Imidazóis/farmacologia , Imunidade Inata , Receptores X do Fígado/agonistas , Receptores X do Fígado/antagonistas & inibidores , Receptores X do Fígado/genética , NF-kappa B/genética , NF-kappa B/imunologia , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/imunologia , Fenilenodiaminas/farmacologia , Cultura Primária de Células , Receptores Acoplados a Proteínas G , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/imunologia , Sulfonamidas/farmacologia , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
19.
Biomed Res Int ; 2015: 891236, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26491691

RESUMO

T lymphocytes activated by dendritic cells (DC) which present tumor antigens play a key role in the antitumor immune response. However, in patients suffering from active cancer, DC are not efficient at initiating and supporting immune responses as they participate to T lymphocyte inhibition. DC in the tumor environment are functionally defective and exhibit a characteristic of immature phenotype, different to that of DC present in nonpathological conditions. The mechanistic bases underlying DC dysfunction in cancer responsible for the modulation of T-cell responses and tumor immune escape are still being investigated. Using two different mouse tumor models, we showed that tumor-infiltrating DC (TIDC) are constitutively immunosuppressive, exhibit a semimature phenotype, and impair responder T lymphocyte proliferation and activation by a mechanism involving CD39 ectoenzyme.


Assuntos
Antígenos CD/imunologia , Apirase/imunologia , Arginase/imunologia , Células Dendríticas/imunologia , Neoplasias Experimentais/imunologia , Linfócitos T/imunologia , Evasão Tumoral , Animais , Linhagem Celular Tumoral , Proliferação de Células , Células Dendríticas/patologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/patologia , Linfócitos T/patologia
20.
J Clin Invest ; 125(11): 4107-21, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26436651

RESUMO

Granulomatosis with polyangiitis (GPA) is a systemic necrotizing vasculitis that is associated with granulomatous inflammation and the presence of anti-neutrophil cytoplasmic antibodies (ANCAs) directed against proteinase 3 (PR3). We previously determined that PR3 on the surface of apoptotic neutrophils interferes with induction of antiinflammatory mechanisms following phagocytosis of these cells by macrophages. Here, we demonstrate that enzymatically active membrane-associated PR3 on apoptotic cells triggered secretion of inflammatory cytokines, including granulocyte CSF (G-CSF) and chemokines. This response required the IL-1R1/MyD88 signaling pathway and was dependent on the synthesis of NO, as macrophages from animals lacking these pathways did not exhibit a PR3-associated proinflammatory response. The PR3-induced microenvironment facilitated recruitment of inflammatory cells, such as macrophages, plasmacytoid DCs (pDCs), and neutrophils, which were observed in close proximity within granulomatous lesions in the lungs of GPA patients. In different murine models of apoptotic cell injection, the PR3-induced microenvironment instructed pDC-driven Th9/Th2 cell generation. Concomitant injection of anti-PR3 ANCAs with PR3-expressing apoptotic cells induced a Th17 response, revealing a GPA-specific mechanism of immune polarization. Accordingly, circulating CD4+ T cells from GPA patients had a skewed distribution of Th9/Th2/Th17. These results reveal that PR3 disrupts immune silencing associated with clearance of apoptotic neutrophils and provide insight into how PR3 and PR3-targeting ANCAs promote GPA pathophysiology.


Assuntos
Apoptose/fisiologia , Autoantígenos/fisiologia , Granulomatose com Poliangiite/imunologia , Mieloblastina/fisiologia , Animais , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Autoantígenos/imunologia , Membrana Celular/enzimologia , Microambiente Celular , Citocinas/metabolismo , Células Dendríticas/imunologia , Fator Estimulador de Colônias de Granulócitos/fisiologia , Granulomatose com Poliangiite/enzimologia , Granulomatose com Poliangiite/patologia , Humanos , Pulmão/patologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Mieloblastina/biossíntese , Mieloblastina/imunologia , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/fisiologia , Neutrófilos/enzimologia , Neutrófilos/imunologia , Neutrófilos/patologia , Óxido Nítrico/fisiologia , Peritonite/imunologia , Peritonite/patologia , Fagocitose , Receptores Tipo I de Interleucina-1/fisiologia , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA