Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Pulmonol ; 59(5): 1402-1409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426807

RESUMO

INTRODUCTION: Forced expiratory volume in the first second (FEV1)/forced vital capacity (FVC) normally decreases through childhood, increases briefly during early adolescence, and then declines throughout life. The physiology behind this temporary increase during early adolescence is not well understood. The objective of this study was to determine if this pattern occurs in children with asthma. DESIGN: Single-center, cross-sectional, retrospective analysis of pulmonary function tests obtained over a 5-year period in children 5-18 years of age with persistent asthma. RESULTS: A total of 1793 patients satisfied all inclusion and exclusion criteria. The mean age (±SD) was 10.4 ± 3.8 years. Forty-eight percent were female. Mean FEV1/FVC was 0.83 ± 0.09. FEV1/FVC was lower at 5 years of age than in healthy children, declined from age 5 to 11 by 5.7% compared to 7.3% in healthy girls, and 5.8% compared to 9.4% in healthy boys. FEV1/FVC increased in early adolescence, but at age 16, was 5.6% lower in male children compared to healthy children, and 5.4% lower in females. The ratio was lower in obese children at all ages but demonstrated the same curvilinear shape as healthy children. In absolute terms, FEV1 grew proportionately more than FVC during early adolescence, so the ratio of FEV1/FVC increased during that period. The curvilinear shape of the curve remained in postbronchodilator testing, though significantly blunted. CONCLUSIONS: FEV1/FVC is lower in children with persistent asthma than healthy children, but the "Shepherd's Hook" pattern is preserved. This was true in obese patients with asthma, although their FEV1/FVC ratios were lower throughout all stages of childhood and adolescence.


Assuntos
Asma , Humanos , Criança , Asma/fisiopatologia , Feminino , Masculino , Estudos Transversais , Estudos Retrospectivos , Adolescente , Volume Expiratório Forçado , Capacidade Vital , Pré-Escolar , Fatores Etários
2.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L639-L651, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36648147

RESUMO

Idiopathic pulmonary fibrosis is increasingly associated with nerve-driven processes and endogenous innate immune ligands such as mitochondrial DNA (mtDNA). Interestingly, a connection between these entities has not been explored. Here, we report that noradrenaline (NA) derived from the lung's adrenergic nerve supply drives α-smooth muscle actin (αSMA)-expressing fibroblast accumulation via mechanisms involving α1 adrenoreceptors and mtDNA. Using the bleomycin model, we compared ablation of the lung's adrenergic nerve supply with surgical adrenal resection and found that NA derived from local but not adrenal sources contributes to experimentally induced lung fibrosis and the emergence of an αSMA+ve fibroblast population expressing adrenoreceptor α-1D (ADRA1D). Therapeutic delivery of the α1 adrenoreceptor antagonist terazosin reversed these changes and suppressed extracellular mtDNA accumulation. Cultured normal human lung fibroblasts displayed α1 adrenoreceptors and in response to costimulation with TGFß1 and NA adopted ACTA2 expression and extracellular mtDNA release. These findings were opposed by terazosin. Evaluation of a previously studied IPF cohort revealed that patients prescribed α1 adrenoreceptor antagonists for nonpulmonary indications demonstrated improved survival and reduced concentrations of plasma mtDNA. Our observations link nerve-derived NA, α1 adrenoreceptors, extracellular mtDNA, and lung fibrogenesis in mouse models, cultured cells, and humans with IPF. Further study of this neuroinnate connection may yield new avenues for investigation in the clinical and basic science realms.


Assuntos
DNA Mitocondrial , Fibrose Pulmonar Idiopática , Camundongos , Animais , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Transdução de Sinais , Fibroblastos/metabolismo , Bleomicina/farmacologia , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia
3.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L1137-L1146, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33851886

RESUMO

Sarcoidosis is a systemic granulomatous disease predominantly affecting the lungs. The mechanisms promoting disease pathogenesis and progression are unknown, although interleukin-15 (IL-15) has been associated with the immune-mediated inflammation of sarcoidosis. Because the identification of a mechanistically based, clinically relevant biomarker for sarcoidosis remains elusive, we hypothesized this role for IL-15. Pulmonary sarcoidosis granuloma formation was modeled using trehalose 6,6'-dimicolate (TDM), which was administered into wild-type and three lineages of mice: those overexpressing IL-15, deficient in IL-15, and deficient in IL-15 receptor α. The number of granulomas per lung was counted and normalized to the wild type. IL-15 concentrations were measured in the bronchoalveolar lavage (BAL) from healthy controls and subjects with sarcoidosis in our cohort, where associations between IL-15 levels and clinical manifestations were sought. Findings were validated in another independent sarcoidosis cohort. TDM administration resulted in similar granuloma numbers across all lineages of mice. IL-15 concentrations were elevated in the BAL of both human cohorts, irrespective of disease phenotypes. In exploratory analysis, an association with obesity was observed, and various other soluble mediators were identified in the BAL of both cohorts. Although IL-15 is enriched in the sarcoidosis lung, it was independent of disease pathogenesis or clinical manifestations in our mouse model and human cohorts of sarcoidosis. An association with obesity perhaps reflects the ongoing inflammatory processes of these comorbid conditions. Our findings showed that IL-15 is redundant for disease pathogenesis and clinical progression of sarcoidosis.


Assuntos
Granuloma/metabolismo , Interleucina-15/metabolismo , Fenótipo , Sarcoidose Pulmonar/patologia , Sarcoidose/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Granuloma/patologia , Inflamação/patologia , Interleucina-15/genética , Pulmão/metabolismo , Pulmão/patologia , Sarcoidose/patologia , Sarcoidose Pulmonar/complicações
4.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393489

RESUMO

Fibrosis is a macrophage-driven process of uncontrolled extracellular matrix accumulation. Neuronal guidance proteins such as netrin-1 promote inflammatory scarring. We found that macrophage-derived netrin-1 stimulates fibrosis through its neuronal guidance functions. In mice, fibrosis due to inhaled bleomycin engendered netrin-1-expressing macrophages and fibroblasts, remodeled adrenergic nerves, and augmented noradrenaline. Cell-specific knockout mice showed that collagen accumulation, fibrotic histology, and nerve-associated endpoints required netrin-1 of macrophage but not fibroblast origin. Adrenergic denervation; haploinsufficiency of netrin-1's receptor, deleted in colorectal carcinoma; and therapeutic α1 adrenoreceptor antagonism improved collagen content and histology. An idiopathic pulmonary fibrosis (IPF) lung microarray data set showed increased netrin-1 expression. IPF lung tissues were enriched for netrin-1+ macrophages and noradrenaline. A longitudinal IPF cohort showed improved survival in patients prescribed α1 adrenoreceptor blockade. This work showed that macrophages stimulate lung fibrosis via netrin-1-driven adrenergic processes and introduced α1 blockers as a potentially new fibrotic therapy.


Assuntos
Pulmão/inervação , Pulmão/metabolismo , Macrófagos/metabolismo , Netrina-1/metabolismo , Fibrose Pulmonar/metabolismo , Animais , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Feminino , Pulmão/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Netrina-1/genética , Norepinefrina/genética , Norepinefrina/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia
5.
Arthritis Rheumatol ; 72(11): 1905-1915, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32602227

RESUMO

OBJECTIVE: Systemic sclerosis-associated interstitial lung disease (SSc-ILD) is characterized by variable clinical outcomes, activation of innate immune pattern-recognition receptors (PRRs), and accumulation of α-smooth muscle actin (α-SMA)-expressing myofibroblasts. The aim of this study was to identify an association between these entities and mitochondrial DNA (mtDNA), an endogenous ligand for the intracellular DNA-sensing PRRs Toll-like receptor 9 (TLR-9) and cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING), which has yet to be determined. METHODS: Human lung fibroblasts (HLFs) from normal donors and SSc-ILD explants were treated with synthetic CpG DNA and assayed for α-SMA expression and extracellular mtDNA using quantitative polymerase chain reaction for the human MT-ATP6 gene. Plasma MT-ATP6 concentrations were evaluated in 2 independent SSc-ILD cohorts and demographically matched controls. The ability of SSc-ILD and control plasma to induce TLR-9 and cGAS/STING activation was evaluated with commercially available HEK 293 reporter cells. Plasma concentrations of type I interferons (IFNs), interleukin-6 (IL-6), and oxidized DNA were measured using electrochemiluminescence and enzyme-linked immunosorbent assay-based methods. Extracellular vesicles (EVs) precipitated from plasma were evaluated for MT-ATP6 concentrations and proteomics via liquid chromatography mass spectrometry. RESULTS: Normal HLFs and SSc-ILD fibroblasts developed increased α-SMA expression and MT-ATP6 release following CpG stimulation. Plasma mtDNA concentrations were increased in the 2 SSc-ILD cohorts, reflective of ventilatory decline, and were positively associated with both TLR-9 and cGAS/STING activation as well as type I IFN and IL-6 expression. Plasma mtDNA was not oxidized and was conveyed by EVs displaying a proteomics profile consistent with a multicellular origin. CONCLUSION: These findings demonstrate a previously unrecognized connection between EV-encapsulated mtDNA, clinical outcomes, and intracellular DNA-sensing PRR activation in SSc-ILD. Further study of these interactions could catalyze novel mechanistic and therapeutic insights into SSc-ILD and related disorders.


Assuntos
DNA Mitocondrial/sangue , Doenças Pulmonares Intersticiais/sangue , Escleroderma Sistêmico/sangue , Actinas/metabolismo , Citocinas/metabolismo , Progressão da Doença , Feminino , Fibroblastos/metabolismo , Células HEK293 , Humanos , Doenças Pulmonares Intersticiais/etiologia , Masculino , Escleroderma Sistêmico/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA