Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Cell Biol ; 26(3): 464-477, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321204

RESUMO

Leukaemia stem cells (LSCs) in acute myeloid leukaemia present a considerable treatment challenge due to their resistance to chemotherapy and immunosurveillance. The connection between these properties in LSCs remains poorly understood. Here we demonstrate that inhibition of tyrosine phosphatase SHP-1 in LSCs increases their glycolysis and oxidative phosphorylation, enhancing their sensitivity to chemotherapy and vulnerability to immunosurveillance. Mechanistically, SHP-1 inhibition leads to the upregulation of phosphofructokinase platelet (PFKP) through the AKT-ß-catenin pathway. The increase in PFKP elevates energy metabolic activities and, as a consequence, enhances the sensitivity of LSCs to chemotherapeutic agents. Moreover, the upregulation of PFKP promotes MYC degradation and, consequently, reduces the immune evasion abilities of LSCs. Overall, our study demonstrates that targeting SHP-1 disrupts the metabolic balance in LSCs, thereby increasing their vulnerability to chemotherapy and immunosurveillance. This approach offers a promising strategy to overcome LSC resistance in acute myeloid leukaemia.


Assuntos
Leucemia Mieloide Aguda , Reprogramação Metabólica , Humanos , Monitorização Imunológica , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Células-Tronco , Células-Tronco Neoplásicas/metabolismo
2.
Adv Exp Med Biol ; 1442: 125-135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38228962

RESUMO

Hematopoietic stem cells (HSCs) are the source for all blood cells, including immune cells, and they interact dynamically with the immune system. This chapter will explore the nature of stem cells, particularly HSCs, in the context of their immune microenvironment. The dynamic interactions between stem cells and the immune system can have profound implications for current and future therapies, particularly regarding a potential "immune-privileged" HSC microenvironment. Immune/stem cell interactions change during times of stress and injury. Recent advances in cancer immunotherapy have overturned the long-standing belief that, being derived from the self, cancer cells should be immunotolerant. Instead, an immunosurveillance system recognizes and eliminates emergent pre-cancerous cells. Only in the context of a failing immunosurveillance system does cancer fully develop. Combined with the knowledge that stem cells or their unique properties can be critically important for cancer initiation, persistence, and resistance to therapy, understanding the unique immune properties of stem cells will be critical for the development of future cancer therapies. Accordingly, the therapeutic implications for leukemic stem cells (LSCs) inheriting an immune-privileged state from HSCs will be discussed. Through their dynamic interactions with a diverse immune system, stem cells serve as the light and dark root of cancer prevention vs. development.


Assuntos
Leucemia , Nicho de Células-Tronco , Humanos , Células-Tronco Neoplásicas , Células-Tronco Hematopoéticas , Leucemia/terapia , Sistema Imunitário , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA