Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 4(3): 369-79, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15767546

RESUMO

Platelet-derived growth factor receptor alpha (PDGFRalpha) is a type III receptor tyrosine kinase that is expressed on a variety of tumor types. A neutralizing monoclonal antibody to human PDGFRalpha, which did not cross-react with the beta form of the receptor, was generated. The fully human antibody, termed 3G3, has a Kd of 40 pmol/L and blocks both PDGF-AA and PDGF-BB ligands from binding to PDGFRalpha. In addition to blocking ligand-induced cell mitogenesis and receptor autophosphorylation, 3G3 inhibited phosphorylation of the downstream signaling molecules Akt and mitogen-activated protein kinase. This inhibition was seen in both transfected and tumor cell lines expressing PDGFRalpha. The in vivo antitumor activity of 3G3 was tested in human glioblastoma (U118) and leiomyosarcoma (SKLMS-1) xenograft tumor models in athymic nude mice. Antibody 3G3 significantly inhibited the growth of U118 (P=0.0004) and SKLMS-1 (P <0.0001) tumors relative to control. These data suggest that 3G3 may be useful for the treatment of tumors that express PDGFRalpha.


Assuntos
Anticorpos Monoclonais/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Becaplermina , Bioensaio , Linhagem Celular Tumoral , Relação Dose-Resposta Imunológica , Citometria de Fluxo , Humanos , Cinética , Ligantes , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , Camundongos Transgênicos , Transplante de Neoplasias , Fosforilação , Fator de Crescimento Derivado de Plaquetas/química , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-sis , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/imunologia , Fatores de Tempo , Transfecção
2.
J Biol Chem ; 279(4): 2856-65, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14576153

RESUMO

Both the epidermal growth factor receptor (EGFR) and the insulin-like growth factor receptor (IGFR) have been implicated in the tumorigenesis of a variety of human cancers. Effective tumor inhibition has been achieved both experimentally and clinically with a number of strategies that antagonize either receptor activity. Here we constructed and produced two fully human recombinant bispecific antibodies (BsAb) that target both EGFR and IGFR, using two neutralizing human antibodies originally isolated from a phage display library. The BsAb not only retained the antigen binding capacity of each of the parent antibodies, but also were capable of binding to both targets simultaneously as demonstrated by a cross-linking enzyme-linked immunosorbent assay. Furthermore, the BsAb effectively blocked both ligands, EGF and IGF, from binding to their respective receptors, and inhibited tumor cell proliferation as potently as a combination of both the parent antibodies. More importantly, the BsAb were able to completely block activation of several major signal transduction molecules, including Akt and p44/p42 MAP kinases, by both EGF and IGF, whereas each individual parent antibody was only effective in inhibiting those signal molecules activated by the relevant single growth factor. The BsAb molecules retained good antigen binding activity after incubation with mouse serum at 37 degrees C for up to 6 days. Taken together, our results underscore the benefits of simultaneous targeting multiple growth factor receptor pathways for more efficacious cancer treatment. This report describes the first time use of a recombinant BsAb for targeting two tumor-associated molecules on either a single or adjacent tumor cells for enhanced antitumor activity.


Assuntos
Anticorpos Biespecíficos/farmacologia , Receptores ErbB/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Receptores de Somatomedina/antagonistas & inibidores , Anticorpos Biespecíficos/imunologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/imunologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Relação Dose-Resposta Imunológica , Receptores ErbB/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Somatomedina/imunologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA