Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
EClinicalMedicine ; 59: 101954, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37096186

RESUMO

Background: Omega-3 fatty acids are critical for neuropsychological functioning. Adolescence is increasingly believed to entail brain vulnerability to dietary intake. The potential benefit on adolescent neurodevelopment of consuming walnuts, a source of omega-3 alpha-linolenic acid (ALA), remains unclear. Methods: We conducted a 6-month multi-school-based randomised controlled nutrition intervention trial to assess whether walnut consumption has beneficial effects on the neuropsychological and behavioural development of adolescents. The study took place between 04/01/2016 and 06/30/2017 in twelve different high schools in Barcelona, Spain (ClinicalTrials.gov Identifier: NCT02590848). A total of 771 healthy teenagers aged 11-16 years were randomised into two equal groups (intervention or control). The intervention group received 30 g/day of raw walnut kernels to be incorporated into their diet for 6 months. Multiple primary endpoints concerning neuropsychological (working memory, attention, fluid intelligence, and executive function) and behavioural (socio-emotional and attention deficit hyperactivity disorder [ADHD] symptoms) development were assessed at baseline and after intervention. Red blood cell (RBC) ALA status was determined at baseline and 6 months as a measure of compliance. Main analyses were based on intention-to-treat using a linear mixed-effects model. A per-protocol effect of the intervention was analysed using inverse-probability weighting to account for post-randomisation prognostic factors (including adherence) using generalised estimating equations. Findings: In intention-to-treat analyses, at 6 months there were no statistically significant changes between the intervention and control groups for all primary endpoints. RBC ALA (%) significantly increased only in the intervention group, coefficient = 0.04 (95% Confidence Interval (CI) = 0.03, 0.06; p < 0.0001). The per-protocol (adherence-adjusted) effect on improvement in attention score (hit reaction time variability) was -11.26 ms (95% CI = -19.92, -2.60; p = 0.011) for the intervention group as compared to the control group, improvement in fluid intelligence score was 1.78 (95% CI = 0.90, 2.67; p < 0.0001), and reduction of ADHD symptom score was -2.18 (95% CI = -3.70, -0.67; p = 0.0050). Interpretation: Our study suggested that being prescribed eating walnuts for 6 months did not improve the neuropsychological function of healthy adolescents. However, improved sustained attention, fluid intelligence, and ADHD symptoms were observed in participants who better complied with the walnut intervention. This study provides a foundation for further clinical and epidemiological research on the effect of walnuts and ALA on neurodevelopment in adolescents. Funding: This study was supported by Instituto de Salud Carlos III through the projects 'CP14/00108, PI16/00261, PI21/00266' (co-funded by European Union Regional Development Fund 'A way to make Europe'). The California Walnut Commission (CWC) has given support by supplying the walnuts for free for the Walnuts Smart Snack Dietary Intervention Trial.

3.
Environ Res ; 226: 115574, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36841520

RESUMO

As the world becomes more urbanized, more people become exposed to traffic and the risks associated with a higher exposure to road traffic noise increase. Excessive exposure to environmental noise could potentially interfere with functional maturation of the auditory brain in developing individuals. The aim of the present study was to assess the association between exposure to annual average road traffic noise (LAeq) in schools and functional connectivity of key elements of the central auditory pathway in schoolchildren. A total of 229 children from 34 representative schools in the city of Barcelona with ages between 8 and 12 years (49.2% girls) were evaluated. LAeq was obtained as the mean of 2-consecutive day measurements inside classrooms before lessons started following standard procedures to obtain an indicator of long-term road traffic noise levels. A region-of-interest functional connectivity Magnetic Resonance Imaging (MRI) approach was adopted. Functional connectivity maps were generated for the inferior colliculus, medial geniculate body of the thalamus and primary auditory cortex as key levels of the central auditory pathway. Road traffic noise in schools was significantly associated with stronger connectivity between the inferior colliculus and a bilateral thalamic region adjacent to the medial geniculate body, and with stronger connectivity between the medial geniculate body and a bilateral brainstem region adjacent to the inferior colliculus. Such a functional connectivity strengthening effect did not extend to the cerebral cortex. The anatomy of the association implicating subcortical relays suggests that prolonged road traffic noise exposure in developing individuals may accelerate maturation in the basic elements of the auditory pathway. Future research is warranted to establish whether such a faster maturation in early pathway levels may ultimately reduce the developing potential in the whole auditory system.


Assuntos
Vias Auditivas , Ruído dos Transportes , Criança , Feminino , Humanos , Masculino , Ruído dos Transportes/efeitos adversos , Corpos Geniculados , Cidades , Instituições Acadêmicas , Exposição Ambiental
4.
Eur Child Adolesc Psychiatry ; 32(11): 2187-2195, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35960396

RESUMO

Omega-3 fatty acids are critical for brain function. Adolescence is increasingly believed to entail brain vulnerability to dietary intake. In contrast to the abundant research on the omega-3 docosahexaenoic acid (DHA) in cognition, research on DHA and attention in healthy adolescents is scarce. In addition, the role of alpha-linolenic acid (ALA), the vegetable omega-3 fatty acid, is unexplored. We examined associations between DHA and ALA and attention function among a healthy young population. In this cross-sectional study conducted in 372 adolescents (13.8 ± 0.9 years-old), we determined the red blood cell proportions of DHA and ALA by gas chromatography (objective biomarkers of their long-term dietary intake) and measured attention scores through the Attention Network Test. We constructed multivariable linear regression models to analyze associations, controlling for known confounders. Compared to participants at the lowest DHA tertile (reference), those at the highest DHA tertile showed significantly lower hit reaction time-standard error (higher attentiveness) (28.13 ms, 95% confidence interval [CI] = - 52.30; - 3.97), lower hit reaction time ( - 38.30 ms, 95% CI = - 73.28; - 3.33) and lower executive conflict response ( - 5.77 ms, 95% CI = - 11.44; - 0.09). In contrast, higher values were observed in those at the top tertile of ALA in hit reaction time compared to the lowest one (46.14 ms, 95% CI = 9.90; 82.34). However, a beneficial association was observed for ALA, with decreasing impulsivity index across tertiles. Overall, our results suggest that DHA (reflecting its dietary intake) is associated with attention performance in typically developing adolescents. The role of dietary ALA in attention is less clear, although higher blood levels of ALA appear to result in lower impulsivity. Future intervention studies are needed to determine the causality of these associations and to better shape dietary recommendations for brain health during the adolescence period.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Humanos , Adolescente , Criança , Estudos Transversais , Ácido alfa-Linolênico , Eritrócitos
5.
Artigo em Inglês | MEDLINE | ID: mdl-36231371

RESUMO

There is existing evidence on how excessive screen exposure can be detrimental to cognitive health, and in recent years there has been an increase in the usage of mobile phones by adolescents. We aimed to examine the association between mobile phone screen exposure and cognitive function among a young healthy population. We carried out a cross-sectional study conducted in 632 adolescents (13.89 ± 0.52 years old). Exposure data were collected through self-reported questionnaires, and cognitive outcomes were assessed by different computer-based neuropsychological tests. Compared to students in the lowest tertile (<9 min/day) of mobile phone screen exposure (MPSE), those in the medium tertile (9-20 min/day) showed significantly higher hit reaction time standard error (HRT-SE, higher inattentiveness) = (14.9 ms, 95% CI = 0.6; 29.3), as did as those in the highest tertile (>20 min/day) = (11.1 ms, 95% CI = 2.8; 25.0). When adjusting for confounders, the association held for the medium-MPSE tertile (17.6 ms, 95% CI = 3.4; 31.7). When further adjusting for intermediate factors, an increase in inattentiveness scores was also observed in both groups, with higher HRT-SE values for participants in the medium (15.8 ms, 95% CI = 1.4; 30.3) and highest MPSE tertiles (14.97 ms, 95% CI = 0.9; 29.1). There were no significant associations with fluid intelligence or working memory scores. Overall, our study shows that healthy teenagers reporting higher screen exposure may be affected in their attention performance. However, more studies are needed to determine the causality of these associations and to better shape the screen exposure recommended guidelines for brain health during adolescence.


Assuntos
Telefone Celular , Adolescente , Cognição , Estudos Transversais , Humanos , Autorrelato , Inquéritos e Questionários
6.
PLoS Med ; 19(6): e1004001, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653430

RESUMO

BACKGROUND: Road traffic noise is a prevalent and known health hazard. However, little is known yet about its effect on children's cognition. We aimed to study the association between exposure to road traffic noise and the development of working memory and attention in primary school children, considering school-outdoor and school-indoor annual average noise levels and noise fluctuation characteristics, as well as home-outdoor noise exposure. METHODS AND FINDINGS: We followed up a population-based sample of 2,680 children aged 7 to 10 years from 38 schools in Barcelona (Catalonia, Spain) between January 2012 to March 2013. Children underwent computerised cognitive tests 4 times (n = 10,112), for working memory (2-back task, detectability), complex working memory (3-back task, detectability), and inattentiveness (Attention Network Task, hit reaction time standard error, in milliseconds). Road traffic noise was measured indoors and outdoors at schools, at the start of the school year, using standard protocols to obtain A-weighted equivalent sound pressure levels, i.e., annual average levels scaled to human hearing, for the daytime (daytime LAeq, in dB). We also derived fluctuation indicators out of the measurements (noise intermittency ratio, %; and number of noise events) and obtained individual estimated indoor noise levels (LAeq) correcting for classroom orientation and classroom change between years. Home-outdoor noise exposure at home (Lden, i.e., EU indicator for the 24-hour annual average levels) was estimated using Barcelona's noise map for year 2012, according to the European Noise Directive (2002). We used linear mixed models to evaluate the association between exposure to noise and cognitive development adjusting for age, sex, maternal education, socioeconomical vulnerability index at home, indoor or outdoor traffic-related air pollution (TRAP) for corresponding school models or outdoor nitrogen dioxide (NO2) for home models. Child and school were included as nested random effects. The median age (percentile 25, percentile 75) of children in visit 1 was 8.5 (7.8; 9.3) years, 49.9% were girls, and 50% of the schools were public. School-outdoor exposure to road traffic noise was associated with a slower development in working memory (2-back and 3-back) and greater inattentiveness over 1 year in children, both for the average noise level (e.g., ‒4.83 points [95% CI: ‒7.21, ‒2.45], p-value < 0.001, in 2-back detectability per 5 dB in street levels) and noise fluctuation (e.g., ‒4.38 [‒7.08, ‒1.67], p-value = 0.002, per 50 noise events at street level). Individual exposure to the road traffic average noise level in classrooms was only associated with inattentiveness (2.49 ms [0, 4.81], p-value = 0.050, per 5 dB), whereas indoor noise fluctuation was consistently associated with all outcomes. Home-outdoor noise exposure was not associated with the outcomes. Study limitations include a potential lack of generalizability (58% of mothers with university degree in our study versus 50% in the region) and the lack of past noise exposure assessment. CONCLUSIONS: We observed that exposure to road traffic noise at school, but not at home, was associated with slower development of working memory, complex working memory, and attention in schoolchildren over 1 year. Associations with noise fluctuation indicators were more evident than with average noise levels in classrooms.


Assuntos
Ruído dos Transportes , Criança , Cognição , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Masculino , Ruído dos Transportes/efeitos adversos , Espanha/epidemiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-34360520

RESUMO

Studies on factors that can influence attention in healthy adolescents are recent and focus on recurrent topics. Students' contribution to public health research often revolves around collecting data but rarely around creating data collection instruments. The ATENC!Ó project reunited secondary students and scientists to create a questionnaire including factors that students thought could affect their attention. We conducted a cross-sectional study to assess whether the factors included in this questionnaire had an effect on attention in adolescents. A total of 1667 students (13-16 years old) from 28 schools in Barcelona performed a validated attention test and answered the questionnaire. The response speed consistency (attentiveness), expressed as hit reaction time standard error (HRT-SE, in ms), was used as the primary outcome. Analyses were conducted using conditional linear regression with school as strata, adjusted for sociodemographic characteristics and further stratified by gender and maternal social class. Some factors showed a negative influence on attention, including taking medication and not reading regularly. We found a significant 14.3% (95% confidence interval: 3.4%, 25.3%) higher median of HRT-SE (increase inattentiveness) among students who reported not having a good relationship with classmates. Students' input into research is relevant for advancing the knowledge production in public health.


Assuntos
Ciência do Cidadão , Adolescente , Atenção , Estudos Transversais , Humanos , Instituições Acadêmicas , Espanha , Estudantes , Inquéritos e Questionários
8.
Environ Int ; 155: 106700, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34144474

RESUMO

BACKGROUND: Urban environments are characterised by many factors that may influence children's lifestyle and increase the risk of childhood obesity, but multiple urban exposures have scarcely been studied. OBJECTIVE: We evaluated the association between multiple urban exposures and childhood obesity outcomes and weight-related behaviours. METHODS: We conducted a cross-sectional study including 2213 children aged 9-12 years in Sabadell, Spain. We estimated ambient air pollution, green spaces, built and food environment, road traffic and road traffic noise at residential addresses through a total of 28 exposure variables in various buffers. Childhood obesity outcomes included body mass index (BMI), waist circumference and body fat. Weight-related behaviours included diet (fast food and sugar-sweetened beverage consumption), physical activity, sedentary behaviour, sleep duration and well-being. Associations between exposures (urban environment) and outcomes (obesity and behaviours) were estimated in single and multiple-exposure regression models and in a hierarchical clustering on principal components (HCPC) analysis. RESULTS: Forty percent of children were overweight or obese. In single exposure models, very few associations were observed between the urban exposures and obesity outcomes or weight-related behaviours after correction for multiple testing. In multiple exposure models, PMcoarse, denser unhealthy food environment and land use mix were statistically significant associated with childhood obesity outcomes (e.g 17.7 facilities/km2 increase of unhealthy food environment (OR overweight/obesity status) = 1.20 [95% CI: 1.01; 1.44]). Cluster analysis identified 5 clusters of urban exposures. Compared to the most neutral cluster, the cluster with high air pollution, road traffic, and road noise levels was associated with a higher BMI and higher odds of overweight and obesity (ß (zBMI) = 0.17, [95% CI: 0.01, 0.17]; OR (overweight/obesity) = 1.36, [95% CI: 0.99, 1.85]); the clusters were not associated with the weight-related behaviours. CONCLUSIONS: This systematic study of many exposures in the urban environment suggests that an exposure pattern characterised by higher levels of ambient air pollution, road traffic and road traffic noise is associated with increased childhood obesity risk and that PMcoarse, land use mix and food environment are separately associated with obesity risk. These findings require follow-up in longitudinal studies and different settings.


Assuntos
Poluição do Ar , Obesidade Infantil , Criança , Estudos Transversais , Humanos , Sobrepeso , Obesidade Infantil/epidemiologia , Obesidade Infantil/etiologia , Instituições Acadêmicas
9.
Front Pediatr ; 9: 593847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34169045

RESUMO

Background: Adolescence, when the most complex behaviors are refined to adult sophistication, represents a major window of opportunity and vulnerability for neuropsychological development. To support and protect this complex and active brain growth, different nutritional components considered essential need to be acquired from the diet. For instance, omega-3 fatty acids are mainly obtained from seafood, seeds, and walnuts. Known for their rich lipid profile, walnuts contain sizable amounts of an essential fatty acid, alpha-linolenic acid (ALA), the vegetable omega-3 fatty acid that is the precursor of two longer-chain omega-3 polyunsaturated fatty acids (omega-3 PUFA): docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids. While there is growing evidence of neuropsychological improvements in the young developing brain associated with omega-3 PUFA intake, few studies have examined whether consuming walnuts during adolescence entails similar beneficial effects. There is a need to further explore the ways in which walnuts influence youthful brain function, particularly for the long-term. Thus, we designed the WALNUTs study (WSS), a population-based randomized controlled trial conducted in adolescents in Barcelona, Spain. We hypothesize that walnut intake will increase omega-3 PUFA tissue availability (particularly ALA) to a level that enhances the neuropsychological development during adolescence. Methodology/Design: We conducted a 6-month population-based randomized controlled trial in teenagers (n = 800) and we aimed to determine the effectiveness of the intervention (four walnuts per day, or 30 kernel g, ~1.5g of ALA) in enhancing brain neuropsychological and socio-emotional development compared to a control group with no walnut intervention. Before randomization, different neuropsychological tests were recorded for all participants, and blood samples (in a subsample of participants) were collected to measure omega-3 PUFA levels at baseline, and all again, after randomization and the intervention. The data is now collected and we will conduct linear regression models to assess the effect of the intervention. Discussion: The WALNUTs (WSS) study results will allow us to better understand the role of plant-based omega-3 PUFA intake from regular walnut consumption on neuropsychological development during adolescence. Results could be translated into nutritional public health recommendations targeting teenagers. Trial Registration: ClinicalTrials.gov, U.S. National Library of Medicine, National Institutes of Health # NCT02590848. Retrospectively registered 29/10/2015.

10.
Environ Int ; 156: 106614, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34000503

RESUMO

BACKGROUND: The recent evidence of the short-term impact of air pollution on youth cognitive functions is based primarily on observational studies. OBJECTIVES: We conducted a randomized controlled trial to assess whether purifying the air of the classrooms produced short-term changes in attention processes of adolescents. METHODS: We recruited a total of 2,123 adolescents (13-16 years old) in 33 high schools in Barcelona metropolitan area (Spain). In each school, adolescents from each class were randomly split into two equal-sized groups and assigned to two different classrooms. A set of two air cleaner devices with the same appearance (one recirculating and filtrating the air and the other only recirculating the air) was used. Each one of the devices was placed at random at one of the two classrooms. Students were masked to intervention allocation and had to complete several computerized activities for 1.5 h, including an attention test (Flanker task) to be performed at baseline and at the end of the intervention. The response speed consistency, expressed as hit reaction time standard error (HRT-SE, in ms), was measured as the primary outcome. Analyses were conducted using conditional linear regressions with classroom as strata, adjusted for variables that may differ from one class to another such as temperature, humidity and carbon dioxide concentration. RESULTS: Average levels of PM2.5 and black carbon throughout the 1.5 h of experiment were 89% and 87%, respectively, lower in the classrooms with air cleaner than in the control classrooms. No differences were found in the median of HRT-SE between classrooms with cleaned air and normal air (percent change: 1.37%, 95% confidence interval: -2.81%, 5.56%). Sensitivity analyses with secondary attention outcomes resulted in similar findings. CONCLUSIONS: Cleaning the air of a classroom to reduce exposure to air pollutants for 1.5 h did not have an impact on the attention function of adolescents. Still, in light of previous evidence suggesting an association between air pollution and attention, further experimental studies should explore other short-term timescales of exposure and age ranges.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adolescente , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Atenção , Humanos , Material Particulado/análise , Instituições Acadêmicas , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA