Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Acta Physiol (Oxf) ; : e14210, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086215
2.
Acta Physiol (Oxf) ; : e14221, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207025
3.
4.
Acta Physiol (Oxf) ; 240(9): e14211, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39073055

RESUMO

AIMS: A myokine secreted by skeletal muscles during exercise called irisin mitigates ischemia-reperfusion (I/R) injury in epithelial cells of various organs by limiting damage to mitochondria. We test whether irisin may preserve the mitochondrial integrity and function in renal tubular epithelial cells and protect against ischemia-reperfusion-induced acute kidney injury (AKI). METHODS: We correlated serum irisin levels with serum creatinine and BUN levels from both AKI patients and healthy individuals. In mice with irisin administration, various renal injury markers such as serum creatinine, BUN, kidney injury molecule-1 (Kim-1), and neutrophil gelatinase-associated lipocalin (NGAL), and renal histopathology were assessed after I/R. To identify the potential mechanisms of the protective of irisin's protective effect, we perfused proximal tubules under confocal microscopy and analyzed kidney tissues by qPCR, western blot, and immunohistochemistry. RESULTS: Serum irisin correlated inversely with serum creatinine and BUN levels were significantly lower in AKI patients than in healthy subjects. Administering irisin to mice after I/R decreased biomarker levels for AKI including serum creatinine, BUN, Kim-1, NAGL and lessened histological changes. In kidney tissues of mice, irisin upregulated the mitochondrial autophagy marker protein microtubule-associated protein 1 light chain 3 (LC3), the mitochondrial autophagy pathway-related proteins PTEN-induced putative kinase 1 (PINK1) and Parkinson's disease 2 parkin (PARK2) and downregulated the reactive substrate protein sequestosome 1 (P62) and mitochondrial membrane proteins translocase of outer mitochondrial membrane 20 (TOM20) and translocase of inner mitochondrial membrane 23 (TIM23). CONCLUSION: Irisin protects against renal I/R injury, which may involve the preservation of mitochondrial integrity and function.


Assuntos
Injúria Renal Aguda , Fibronectinas , Camundongos Endogâmicos C57BL , Mitocôndrias , Traumatismo por Reperfusão , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Animais , Mitocôndrias/metabolismo , Fibronectinas/metabolismo , Humanos , Camundongos , Masculino , Células Epiteliais/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Feminino
5.
6.
Acta Physiol (Oxf) ; 240(8): e14190, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38884453

RESUMO

AIM: Calcineurin inhibitors (CNIs) are the backbone for immunosuppression after solid organ transplantation. Although successful in preventing kidney transplant rejection, their nephrotoxic side effects contribute to allograft injury. Renal parenchymal lesions occur for cyclosporine A (CsA) as well as for the currently favored tacrolimus (Tac). We aimed to study whether chronic CsA and Tac exposures, before reaching irreversible nephrotoxic damage, affect renal compartments differentially and whether related pathogenic mechanisms can be identified. METHODS: CsA and Tac were administered chronically in wild type Wistar rats using osmotic minipumps over 4 weeks. Functional parameters were controlled. Electron microscopy, confocal, and 3D-structured illumination microscopy were used for histopathology. Clinical translatability was tested in human renal biopsies. Standard biochemical, RNA-seq, and proteomic technologies were applied to identify implicated molecular pathways. RESULTS: Both drugs caused significant albeit differential damage in vasculature and nephron. The glomerular filtration barrier was more affected by Tac than by CsA, showing prominent deteriorations in endothelium and podocytes along with impaired VEGF/VEGFR2 signaling and podocyte-specific gene expression. By contrast, proximal tubule epithelia were more severely affected by CsA than by Tac, revealing lysosomal dysfunction, enhanced apoptosis, impaired proteostasis and oxidative stress. Lesion characteristics were confirmed in human renal biopsies. CONCLUSION: We conclude that pathogenetic alterations in the renal compartments are specific for either treatment. Considering translation to the clinical setting, CNI choice should reflect individual risk factors for renal vasculature and tubular epithelia. As a step in this direction, we share protein signatures identified from multiomics with potential pathognomonic relevance.


Assuntos
Ciclosporina , Imunossupressores , Rim , Ratos Wistar , Tacrolimo , Tacrolimo/farmacologia , Animais , Ciclosporina/efeitos adversos , Ciclosporina/toxicidade , Imunossupressores/efeitos adversos , Imunossupressores/farmacologia , Ratos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Humanos , Transplante de Rim
7.
Acta Physiol (Oxf) ; 240(8): e14182, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38783785

Assuntos
Fisiologia , Humanos , Cor , Animais
8.
Acta Physiol (Oxf) ; 240(5): e14136, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38488180
9.
Acta Physiol (Oxf) ; 240(3): e14112, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38343346
10.
Acta Physiol (Oxf) ; 240(2): e14080, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38205920
11.
Acta Physiol (Oxf) ; 240(1): e14067, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093597
12.
Biomedicines ; 11(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38001984

RESUMO

The renin-angiotensin system (RAS) and hypoxia have a complex interaction: RAS is activated under hypoxia and activated RAS aggravates hypoxia in reverse. Renin is an aspartyl protease that catalyzes the first step of RAS and tightly regulates RAS activation. Here, we outline kidney renin expression and release under hypoxia and discuss the putative mechanisms involved. It is important that renin generally increases in response to acute hypoxemic hypoxia and intermittent hypoxemic hypoxia, but not under chronic hypoxemic hypoxia. The increase in renin activity can also be observed in anemic hypoxia and carbon monoxide-induced histotoxic hypoxia. The increased renin is contributed to by juxtaglomerular cells and the recruitment of renin lineage cells. Potential mechanisms regulating hypoxic renin expression involve hypoxia-inducible factor signaling, natriuretic peptides, nitric oxide, and Notch signaling-induced renin transcription.

13.
Acta Physiol (Oxf) ; 239(3): e14055, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37814993
17.
Toxicol Appl Pharmacol ; 473: 116595, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37328118

RESUMO

BACKGROUND: Cisplatin is effective against various types of cancers. However, its clinical application is limited owing to its adverse effects, especially acute kidney injury (AKI). Dihydromyricetin (DHM), a flavonoid derived from Ampelopsis grossedentata, has varied pharmacological activities. This research aimed to determine the molecular mechanism for cisplatin-induced AKI. METHODS: A murine model of cisplatin-induced AKI (22 mg/kg, I.P.) and a HK-2 cell model of cisplatin-induced damage (30 µM) were established to evaluate the protective function of DHM. Renal dysfunction markers, renal morphology and potential signaling pathways were investigated. RESULTS: DHM decreased the levels of renal function biomarkers (blood urea nitrogen and serum creatinine), mitigated renal morphological damage, and downregulated the protein levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. It upregulated the expression levels of antioxidant enzymes (superoxide dismutase and catalase expression), nuclear factor-erythroid-2-related factor 2 (Nrf2) and its downstream proteins, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic (GCLC) and modulatory (GCLM) subunits, thus eventually reducing cisplatin-induced reactive oxygen species (ROS) production. Moreover, DHM partially inhibited the phosphorylation of the active fragments of caspase-8 and -3 and mitogen-activated protein kinase and restored glutathione peroxidase 4 expression, which attenuated renal apoptosis and ferroptosis in cisplatin-treated animals. DHM also mitigated the activation of NLRP3 inflammasome and nuclear factor (NF)-κB, attenuating the inflammatory response. In addition, it reduced cisplatin-induced HK-2 cell apoptosis and ROS production, both of which were blocked by the Nrf2 inhibitor ML385. CONCLUSIONS: DHM suppressed cisplatin-induced oxidative stress, inflammation and ferroptosis probably through regulating of Nrf2/HO-1, MAPK and NF-κB signaling pathways.


Assuntos
Injúria Renal Aguda , Ferroptose , Animais , Camundongos , Cisplatino/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Rim , NF-kappa B/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle
18.
Hypertension ; 80(8): 1598-1610, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37259842

RESUMO

BACKGROUND: Acute hyperglycemia is a risk factor for developing acute kidney injury and poor renal outcome in critically ill patients, whereby the role of renal vasculature remains unclear. We hypothesize that hyperglycemia-associated hyperosmolarity facilitates vasodilation through Piezo1-mediated eNOS (endothelial NO synthase) activation. METHODS: Vasoreactivity was analyzed using wire myography in isolated mouse mesenteric arteries and renal interlobar, and using microvascular perfusion in renal afferent arterioles and efferent arterioles, and vasa recta. Immunofluorescence and Western blot were used for molecular analyses of isolated mouse blood vessels and human umbilical vein endothelial cells. RESULTS: Pretreatment with hyperglycemia (44 mmol/L glucose; 4 hours) increased acetylcholine-induced relaxation in interlobar arteries and mesenteric arteries, which was prevented by eNOS inhibition using Nω-nitro-L-arginine methylester hydrochloride. Hyperosmotic mannitol solution had a similar effect. Hyperglycemia induced an immediate, Nω-nitro-L-arginine methylester hydrochloride-inhibitable dilation in afferent arterioles, efferent arterioles, and vasa recta, whereby stronger dilation in afferent arterioles compared to efferent arterioles. Hyperglycemia also increased glomerular filtration rate in mice. In human umbilical vein endothelial cells, hyperglycemia, and the Piezo1 activator Yoda-1 increased levels of Piezo1 protein, p-CaMKII (phosphorylated Ca2+/Calmodulin-dependent protein kinase type II), Akt (protein kinase B), and p-eNOS (phosphorylated eNOS). The hyperglycemia effect could be prevented by inhibiting Piezo1 using GsMTx4 (Grammostola spatulata mechanotoxin 4) and CaMKII using KN93 (N-[2-[[[3-(4-Chlorophenyl)-2-propenyl]-methylamino]-methyl]-phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphonamide). Furthermore, in arteries and microvessels, inhibition of Piezo1 using GsMTx4 prevented the hyperglycemia -effect, while Yoda-1 caused relaxation and dilation, respectively. CONCLUSIONS: Results reveal that Piezo1 mediates renal vasodilation induced by hyperosmolarity in acute hyperglycemia. This mechanism may contribute to the pathogenesis of renal damage by acute hyperglycemia.


Assuntos
Hiperglicemia , Vasodilatação , Camundongos , Humanos , Animais , Vasodilatação/fisiologia , Artéria Renal/metabolismo , Células Endoteliais/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Arteríolas/metabolismo , Arginina/metabolismo , Hiperglicemia/metabolismo , Óxido Nítrico/metabolismo , Canais Iônicos/metabolismo
20.
Acta Physiol (Oxf) ; 238(2): e13971, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37016450
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA