Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Genome Biol Evol ; 16(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38761112

RESUMO

The increased availability of quality genomic data has greatly improved the scope and resolution of our understanding of the recent evolutionary history of wild species adapted to extreme environments and their susceptibility to anthropogenic impacts. The guanaco (Lama guanicoe), the largest wild ungulate in South America, is a good example. The guanaco is well adapted to a wide range of habitats, including the Sechura Desert, the high Andes Mountains to the north, and the extreme temperatures and conditions of Navarino Island to the south. Guanacos also have a long history of overexploitation by humans. To assess the evolutionary impact of these challenging habitats on the genomic diversity, we analyzed 38 genomes (∼10 to 16×) throughout their extensive latitudinal distribution from the Sechura and Atacama Desert to southward into Tierra del Fuego Island. These included analyses of patterns of unique differentiation in the north and geographic region further south with admixture among L. g. cacsilensis and L. g. guanicoe. Our findings provide new insights on the divergence of the subspecies ∼800,000 yr BP and document two divergent demographic trajectories and to the initial expansion of guanaco into the more southern portions of the Atacama Desert. Patagonian guanacos have experienced contemporary reductions in effective population sizes, likely the consequence of anthropogenic impacts. The lowest levels of genetic diversity corresponded to their northern and western limits of distribution and some varying degrees of genetic differentiation. Adaptive genomic diversity was strongly linked with environmental variables and was linked with colonization toward the south followed by adaptation.


Assuntos
Camelídeos Americanos , Animais , Camelídeos Americanos/genética , Ecossistema , Clima Desértico , Adaptação Fisiológica/genética , Genoma , Variação Genética , Regiões Antárticas , América do Sul , Evolução Molecular
2.
Biodivers Data J ; 12: e106199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344169

RESUMO

Background: Incomplete species inventories for Antarctica represent a key challenge for comprehensive ecological research and conservation in the region. Additionally, data required to understand population dynamics, rates of evolution, spatial ranges, functional traits, physiological tolerances and species interactions, all of which are fundamental to disentangle the different functional elements of Antarctic biodiversity, are mostly missing. However, much of the fauna, flora and microbiota in the emerged ice-free land of the continent have an uncertain presence and/or unresolved status, with entire biodiversity compendia of prokaryotic groups (e.g. bacteria) being missing. All the available biodiversity information requires consolidation, cross-validation, re-assessment and steady systematic inclusion in order to create a robust catalogue of biodiversity for the continent. New information: We compiled, completed and revised eukaryotic species inventories present in terrestrial and freshwater ecosystems in Antarctica in a new living database: terrANTALife (version 1.0). The database includes the first integration in a compendium for many groups of eukaryotic microorganisms. We also introduce a first catalogue of amplicon sequence variants (ASVs) of prokaryotic biodiversity. Available compendia and literature to date were searched for Antarctic terrestrial and freshwater species, integrated, taxonomically harmonised and curated by experts to create comprehensive checklists of Antarctic organisms. The final inventories comprises 470 animal species (including vertebrates, free-living invertebrates and parasites), 306 plants (including all Viridiplantae: embryophytes and green algae), 997 fungal species and 434 protists (sensu lato). We also provide a first account for many groups of microorganisms, including non-lichenised fungi and multiple groups of eukaryotic unicellular species (Stramenophila, Alveolata and Rhizaria (SAR), Chromists and Amoeba), jointly referred to as "protists". In addition, we identify 1753 bacterial (obtained from 348117 ASVs) and 34 archaeal genera (from 1848 ASVs), as well as, at least, 14 virus families. We formulate a basic tree of life in Antarctica with the main lineages listed in the region and their "known-accepted-species" numbers.

3.
J Exp Zool A Ecol Integr Physiol ; 341(4): 357-363, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38318929

RESUMO

The extreme low humidity and temperatures in Antarctica make it one of the harsher areas for life on our planet. In a global change context, environmental barriers that prevented the arrival of alien species in Antarctica are weakening. Deception Island, one of the four active volcanoes of Antarctica, is especially vulnerable to the impacts of alien species. Geothermal areas (GA) in this Island offer unique microclimatic conditions that could differentially affect native and alien soil arthropods. Here we explore the desiccation tolerance of a native (Cryptopygus antarcticus) and an alien (Proisotoma minuta) springtail (Collembola) species to these extreme environmental conditions. GA and non-geothermal areas (NGA) were selected to evaluate intra- and interspecific variation in desiccation tolerance. Populations of P. minuta from GA had greater desiccation tolerance than populations from NGA. However, desiccation tolerance of C. antarcticus did not differ between GA and NGA. This native species had greater desiccation tolerance than the alien P. minuta, but also greater body size. Our findings show that the alien P. minuta responds differently to environmental conditions than the native C. antarcticus. Furthermore, body size may influence desiccation tolerance in these two springtail species.


Assuntos
Artrópodes , Dessecação , Animais , Regiões Antárticas , Artrópodes/fisiologia , Temperatura
4.
Sci Total Environ ; 912: 168473, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38007123

RESUMO

The seasonal movement of the zero-degree isotherm across the Southern Ocean and Antarctic Peninsula drives major changes in the physical and biological processes around maritime Antarctica. These include spatial and temporal shifts in precipitation phase, snow accumulation and melt, thawing and freezing of the active layer of the permafrost, glacier mass balance variations, sea ice mass balance and changes in physiological processes of biodiversity. Here, we characterize the historical seasonal southward movement of the monthly near-surface zero-degree isotherm latitude (ZIL), and quantify the velocity of migration in the context of climate change using climate reanalyses and projections. From 1957 to 2020, the ZIL exhibited a significant southward shift of 16.8 km decade-1 around Antarctica and of 23.8 km decade-1 in the Antarctic Peninsula, substantially faster than the global mean velocity of temperature change of 4.2 km decade-1, with only a small fraction being attributed to the Southern Annular Mode (SAM). CMIP6 models reproduce the trends observed from 1957 to 2014 and predict a further southward migration around Antarctica of 24 ± 12 km decade-1 and 50 ± 19 km decade-1 under the SSP2-4.5 and SSP5-8.5 scenarios, respectively. The southward migration of the ZIL is expected to have major impacts on the cryosphere, especially on the precipitation phase, snow accumulation and in peripheral glaciers of the Antarctic Peninsula, with more uncertain changes on permafrost, ice sheets and shelves, and sea ice. Longer periods of temperatures above 0 °C threshold will extend active biological periods in terrestrial ecosystems and will reduce the extent of oceanic ice cover, changing phenologies as well as areas of productivity in marine ecosystems, especially those located on the sea ice edge.

5.
Insects ; 14(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36835692

RESUMO

Phenotypic plasticity can favor the emergence of different morphotypes specialized in specific ranges of environmental conditions. The existence of intraspecific partitioning confers resilience at the species scale and can ultimately determine species survival in a context of global changes. Amblystogenium pacificum is a carabid beetle endemic to the sub-Antarctic Crozet Islands, and it has two distinctive morphotypes based on body coloration. For this study, A. pacificum specimens of functional niches were sampled along an altitudinal gradient (as a proxy for temperature), and some morphological and biochemical traits were measured. We used an FAMD multivariate analysis and linear mixed-effects models to test whether these traits were related to morphotype, altitude, and sexual dimorphism. We then calculated and compared the functional niches at different altitudes and tested for niche partitioning through a hypervolume approach. We found a positive hump-shaped correlation between altitude and body size as well as higher protein and sugar reserves in females than in males. Our functional hypervolume results suggest that the main driver of niche partitioning along the altitudinal gradient is body size rather than morphotype or sex, even though darker morphotypes tended to be more functionally constrained at higher altitudes and females showed limited trait variations at the highest altitude.

7.
Curr Res Insect Sci ; 2: 100023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003273

RESUMO

Global changes in soil surface temperatures are altering the abundances and distribution ranges of invertebrate species worldwide, including effects on soil microarthropods such as springtails (Collembola), which are vital for maintaining soil health and providing ecosystem services. Studies of thermal tolerance limits in soil invertebrates have the potential to provide information on demographic responses to climate change and guide assessments of possible impacts on the structure and functioning of ecosystems. Here, we review the state of knowledge of thermal tolerance limits in Collembola. Thermal tolerance metrics have diversified over time, which should be taken into account when conducting large-scale comparative studies. A temporal trend shows that the estimation of 'Critical Thermal Limits' (CTL) is becoming more common than investigations of 'Supercooling Point' (SCP), despite the latter being the most widely used metric. Indeed, most studies (66%) in Collembola have focused on cold tolerance; fewer have assessed heat tolerance. The majority of thermal tolerance data are from temperate and polar regions, with fewer assessments from tropical and subtropical latitudes. While the hemiedaphic life form represents the majority of records at low latitudes, euedaphic and epedaphic groups remain largely unsampled in these regions compared to the situation in temperate and high latitude regions, where sampling records show a more balanced distribution among the different life forms. Most CTL data are obtained during the warmest period of the year, whereas SCP and 'Lethal Temperature' (LT) show more variation in terms of the season when the data were collected. We conclude that more attention should be given to understudied zoogeographical regions across the tropics, as well as certain less-studied clades such as the family Neanuridae, to identify the role of thermal tolerance limits in the redistribution of species under changing climates.

8.
Mol Ecol ; 31(6): 1609-1611, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124873

RESUMO

When an alien species establishes at a new location, it must spread to become an invader. The extent to which propagule pressure promotes the spread of invaders, especially at local scales, is often difficult to quantify because it requires a reliable measure of, and variation in, rate of spread, and of propagule pressure across similar areas. In this issue of Molecular Ecology, Mairal et al. (2022) make use an unique system of paired sub-Antarctic islands, one with very infrequent human activities, and another inhabited by scientists, to assess the role of propagule pressure and anthropogenic disturbance in the introduction and spread of a major global invader, Poa annua L., to and on the islands. Genetic admixture between different genetic clusters is virtually absent from the little-visited island, while the inhabited island experienced more introduction events, but also significant admixture between genetic clusters. Detailed distribution maps of P. annua spanning more than 50 years allowed the authors to link genetic diversity to residence time. The nature of the system, and the multifaceted approach used by the authors, allows for new insights into the mechanism by which propagule pressure results in the spread of invasive species.


Assuntos
Fluxo Gênico , Espécies Introduzidas , Regiões Antárticas , Ecologia , Fluxo Gênico/genética , Atividades Humanas , Humanos
9.
Proc Natl Acad Sci U S A ; 117(36): 22303-22310, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817535

RESUMO

Penguins are the only extant family of flightless diving birds. They currently comprise at least 18 species, distributed from polar to tropical environments in the Southern Hemisphere. The history of their diversification and adaptation to these diverse environments remains controversial. We used 22 new genomes from 18 penguin species to reconstruct the order, timing, and location of their diversification, to track changes in their thermal niches through time, and to test for associated adaptation across the genome. Our results indicate that the penguin crown-group originated during the Miocene in New Zealand and Australia, not in Antarctica as previously thought, and that Aptenodytes is the sister group to all other extant penguin species. We show that lineage diversification in penguins was largely driven by changing climatic conditions and by the opening of the Drake Passage and associated intensification of the Antarctic Circumpolar Current (ACC). Penguin species have introgressed throughout much of their evolutionary history, following the direction of the ACC, which might have promoted dispersal and admixture. Changes in thermal niches were accompanied by adaptations in genes that govern thermoregulation and oxygen metabolism. Estimates of ancestral effective population sizes (Ne ) confirm that penguins are sensitive to climate shifts, as represented by three different demographic trajectories in deeper time, the most common (in 11 of 18 penguin species) being an increased Ne between 40 and 70 kya, followed by a precipitous decline during the Last Glacial Maximum. The latter effect is most likely a consequence of the overall decline in marine productivity following the last glaciation.


Assuntos
Evolução Molecular , Genoma/genética , Spheniscidae , Animais , Regiões Antárticas , Austrália , Mudança Climática , Ecossistema , Estudo de Associação Genômica Ampla , Nova Zelândia , Filogenia , Seleção Genética/genética , Spheniscidae/classificação , Spheniscidae/genética , Spheniscidae/fisiologia
10.
J Environ Manage ; 232: 73-89, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30468960

RESUMO

The distribution of terrestrial biodiversity within Antarctica is complex, with 16 distinct biogeographic regions (Antarctic Conservation Biogeographic Regions) currently recognised within the Antarctic continent, Peninsula and Scotia Arc archipelagos of the Antarctic Treaty area. Much of this diversity is endemic not only to Antarctica as a whole, but to specific regions within it. Further complexity is added by inclusion of the biodiversity found on the islands located in the Southern Ocean north of the Treaty area. Within Antarctica, scientific, logistic and tourism activities may inadvertently move organisms over potentially long distances, far beyond natural dispersal ranges. Such translocation can disrupt natural species distribution patterns and biogeography through: (1) movement of spatially restricted indigenous species to other areas of Antarctica; (2) movement of distinct populations of more generally distributed species from one area of Antarctica to another, leading to genetic homogenisation and loss of assumed local patterns of adaptation; and (3) further dispersal of introduced non-native species from one area of Antarctica to another. Species can be moved between regions in association with people and cargo, by ship, aircraft and overland travel. Movement of cargo and personnel by ship between stations located in different biogeographic regions is likely to present one of the greatest risks, particularly as coastal stations may experience similar climatic conditions, making establishment more likely. Recognising that reducing the risk of inter-regional transfer of species is a priority issue for the Antarctic Treaty Consultative Meeting, we make practical recommendations aimed at reducing this risk, including the implementation of appropriate biosecurity procedures.


Assuntos
Biodiversidade , Espécies Introduzidas , Regiões Antárticas , Humanos , Medição de Risco
11.
Sci Data ; 5: 180070, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29664471

RESUMO

This corrects the article DOI: 10.1038/sdata.2017.78.

12.
PLoS One ; 12(8): e0181901, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813428

RESUMO

The main soil physical-chemical features, the concentrations of a set of pollutants, and the soil microbiota linked to penguin rookeries have been studied in 10 selected sites located at the South Shetland Islands and the Antarctic Peninsula (Maritime Antarctica). This study aims to test the hypothesis that biotransport by penguins increases the concentration of pollutants, especially heavy metals, in Antarctic soils, and alters its microbiota. Our results show that penguins do transport certain chemical elements and thus cause accumulation in land areas through their excreta. Overall, a higher penguin activity is associated with higher organic carbon content and with higher concentrations of certain pollutants in soils, especially cadmium, cooper and arsenic, as well as zinc and selenium. In contrast, in soils that are less affected by penguins' faecal depositions, the concentrations of elements of geochemical origin, such as iron and cobalt, increase their relative weighted contribution, whereas the above-mentioned pollutants maintain very low levels. The concentrations of pollutants are far higher in those penguin rookeries that are more exposed to ship traffic. In addition, the soil microbiota of penguin-influenced soils was studied by molecular methods. Heavily penguin-affected soils have a massive presence of enteric bacteria, whose relative dominance can be taken as an indicator of penguin influence. Faecal bacteria are present in addition to typical soil taxa, the former becoming dominant in the microbiota of penguin-affected soils, whereas typical soil bacteria, such as Actinomycetales, co-dominate the microbiota of less affected soils. Results indicate that the continuous supply by penguin faeces, and not the selectivity by increased pollutant concentrations is the main factor shaping the soil bacterial community. Overall, massive penguin influence results in increased concentrations of certain pollutants and in a strong change in taxa dominance in the soil bacterial community.


Assuntos
Poluentes Ambientais , Oceanos e Mares , Spheniscidae , Animais , Regiões Antárticas , Poluentes Ambientais/química , Metagenoma , Metagenômica/métodos , Compostos Orgânicos/análise , Estações do Ano , Solo/química , Microbiologia do Solo
13.
Sci Data ; 4: 170078, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632236

RESUMO

Species Distribution Models (SDMs) combine information on the geographic occurrence of species with environmental layers to estimate distributional ranges and have been extensively implemented to answer a wide array of applied ecological questions. Unfortunately, most global datasets available to parameterize SDMs consist of spatially interpolated climate surfaces obtained from ground weather station data and have omitted the Antarctic continent, a landmass covering c. 20% of the Southern Hemisphere and increasingly showing biological effects of global change. Here we introduce MERRAclim, a global set of satellite-based bioclimatic variables including Antarctica for the first time. MERRAclim consists of three datasets of 19 bioclimatic variables that have been built for each of the last three decades (1980s, 1990s and 2000s) using hourly data of 2 m temperature and specific humidity. We provide MERRAclim at three spatial resolutions (10 arc-minutes, 5 arc-minutes and 2.5 arc-minutes). These reanalysed data are comparable to widely used datasets based on ground station interpolations, but allow extending their geographical reach and SDM building in previously uncovered regions of the globe.

14.
15.
PLoS One ; 12(1): e0168280, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28085889

RESUMO

Human footprint models allow visualization of human spatial pressure across the globe. Up until now, Antarctica has been omitted from global footprint models, due possibly to the lack of a permanent human population and poor accessibility to necessary datasets. Yet Antarctic ecosystems face increasing cumulative impacts from the expanding tourism industry and national Antarctic operator activities, the management of which could be improved with footprint assessment tools. Moreover, Antarctic ecosystem dynamics could be modelled to incorporate human drivers. Here we present the first model of estimated human footprint across predominantly ice-free areas of Antarctica. To facilitate integration into global models, the Antarctic model was created using methodologies applied elsewhere with land use, density and accessibility features incorporated. Results showed that human pressure is clustered predominantly in the Antarctic Peninsula, southern Victoria Land and several areas of East Antarctica. To demonstrate the practical application of the footprint model, it was used to investigate the potential threat to Antarctica's avifauna by local human activities. Relative footprint values were recorded for all 204 of Antarctica's Important Bird Areas (IBAs) identified by BirdLife International and the Scientific Committee on Antarctic Research (SCAR). Results indicated that formal protection of avifauna under the Antarctic Treaty System has been unsystematic and is lacking for penguin and flying bird species in some of the IBAs most vulnerable to human activity and impact. More generally, it is hoped that use of this human footprint model may help Antarctic Treaty Consultative Meeting policy makers in their decision making concerning avifauna protection and other issues including cumulative impacts, environmental monitoring, non-native species and terrestrial area protection.


Assuntos
Biodiversidade , Aves/fisiologia , Conservação dos Recursos Naturais , Demografia/estatística & dados numéricos , Mapeamento Geográfico , Atividades Humanas/estatística & dados numéricos , Animais , Regiões Antárticas , Ecossistema , Monitoramento Ambiental , Humanos
16.
Glob Chang Biol ; 23(7): 2863-2873, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27976462

RESUMO

The two non-native grasses that have established long-term populations in Antarctica (Poa pratensis and Poa annua) were studied from a global multidimensional thermal niche perspective to address the biological invasion risk to Antarctica. These two species exhibit contrasting introduction histories and reproductive strategies and represent two referential case studies of biological invasion processes. We used a multistep process with a range of species distribution modelling techniques (ecological niche factor analysis, multidimensional envelopes, distance/entropy algorithms) together with a suite of thermoclimatic variables, to characterize the potential ranges of these species. Their native bioclimatic thermal envelopes in Eurasia, together with the different naturalized populations across continents, were compared next. The potential niche of P. pratensis was wider at the cold extremes; however, P. annua life history attributes enable it to be a more successful colonizer. We observe that particularly cold summers are a key aspect of the unique Antarctic environment. In consequence, ruderals such as P. annua can quickly expand under such harsh conditions, whereas the more stress-tolerant P. pratensis endures and persist through steady growth. Compiled data on human pressure at the Antarctic Peninsula allowed us to provide site-specific biosecurity risk indicators. We conclude that several areas across the region are vulnerable to invasions from these and other similar species. This can only be visualized in species distribution models (SDMs) when accounting for founder populations that reveal nonanalogous conditions. Results reinforce the need for strict management practices to minimize introductions. Furthermore, our novel set of temperature-based bioclimatic GIS layers for ice-free terrestrial Antarctica provide a mechanism for regional and global species distribution models to be built for other potentially invasive species.


Assuntos
Espécies Introduzidas , Poaceae/crescimento & desenvolvimento , Regiões Antárticas , Ecologia , Previsões , Humanos , Estações do Ano , Temperatura
17.
J Environ Manage ; 177: 320-30, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27111650

RESUMO

Thousands of tourists visit certain Antarctic sites each year, generating a wide variety of environmental impacts. Scientific knowledge of human activities and their impacts can help in the effective design of management measures and impact mitigation. We present a case study from Barrientos Island in which a management measure was originally put in place with the goal of minimizing environmental impacts but resulted in new undesired impacts. Two alternative footpaths used by tourist groups were compared. Both affected extensive moss carpets that cover the middle part of the island and that are very vulnerable to trampling. The first path has been used by tourists and scientists since over a decade and is a marked route that is clearly visible. The second one was created more recently. Several physical and biological indicators were measured in order to assess the environmental conditions for both paths. Some physical variables related to human impact were lower for the first path (e.g. soil penetration resistance and secondary treads), while other biochemical and microbiological variables were higher for the second path (e.g. ß-glucosidase and phosphatase activities, soil respiration). Moss communities located along the new path were also more diverse and sensitive to trampling. Soil biota (Collembola) was also more abundant and richer. These data indicate that the decision to adopt the second path did not lead to the reduction of environmental impacts as this path runs over a more vulnerable area with more outstanding biological features (e.g. microbiota activity, flora and soil fauna diversity). In addition, the adoption of a new route effectively doubles the human footprint on the island. We propose using only the original path that is less vulnerable to the impacts of trampling. Finally from this process, we identify several key issues that may be taken into account when carrying out impact assessment and environmental management decision-making in the Antarctic area.


Assuntos
Conservação dos Recursos Naturais/métodos , Meio Ambiente , Animais , Regiões Antárticas , Artrópodes , Biota , Briófitas , Atividades Humanas , Humanos , Espécies Introduzidas , Ilhas , Recreação , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA