Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 128(20): 8408-8417, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38807631

RESUMO

The interfacial thermal conductance at a solid/liquid interface (G) exhibits an exponential-to-linear crossover with increasing solid/liquid interaction strength, previously attributed to the relative strength of solid/liquid to liquid/liquid interactions. Instead, using a simple Lennard-Jones setup, our molecular simulations reveal that this crossover occurs due to the onset of solidification in the interfacial liquid at high solid/liquid interaction strengths. This solidification subsequently influences interfacial energy transport, leading to the crossover in G. We use the overlap between the spectrally decomposed heat fluxes of the interfacial solid and liquid to pinpoint when "solid-like energy transport" within the interfacial liquid emerges. We also propose a novel decomposition of G into (i) the conductance right at the solid/liquid interface and (ii) the conductance of the nanoscale interfacial liquid region. We demonstrate that the rise of solid-like energy transport within the interfacial liquid influences the relative magnitude of these conductances, which in turn dictates when the crossover occurs. Our results can aid engineers in optimizing G at realistic interfaces, critical to designing effective cooling solutions for electronics among other applications.

2.
Phys Rev Lett ; 131(16): 164001, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925699

RESUMO

Molecular simulations discover a new mode of dynamic wetting that manifests itself in the very earliest stages of spreading, after a droplet contacts a solid. The observed mode is a "rolling" type of motion, characterized by a contact angle lower than the classically assumed value of 180°, and precedes the conventional "sliding" mode of spreading. This motivates the development of a novel continuum framework that captures all modes of motion, allows the dominant physical mechanisms to be understood, and permits the study of larger droplets.

3.
Nano Lett ; 23(10): 4234-4241, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37154913

RESUMO

Many organisms in nature have evolved superhydrophobic surfaces that leverage water droplets to clean themselves. While this ubiquitous self-cleaning process has substantial industrial promise, experiments have so far been unable to comprehend the underlying physics. With the aid of molecular simulations, here we rationalize and theoretically explain self-cleaning mechanisms by resolving the complex interplay between particle-droplet and particle-surface interactions, which originate at the nanoscale. We present a universal phase diagram that consolidates (a) observations from previous surface self-cleaning experiments conducted at micro-to-millimeter length scales and (b) our nanoscale particle-droplet simulations. Counterintuitively, our analysis shows that an upper limit for the radius of the droplet exists to remove contaminants of a particular size. We are now able to predict when and how particles of varying scale (from nano-to-micrometer) and adhesive strengths are removed from superhydrophobic surfaces.

4.
Nanoscale ; 12(40): 20631-20637, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-32776062

RESUMO

Next-generation processor-chip cooling devices and self-cleaning surfaces can be enhanced by a passive process that requires little to no electrical input, through coalescence-induced nanodroplet jumping. Here, we describe the crucial impact thermal capillary waves and ambient gas rarefaction have on enhancing/limiting the jumping speeds of nanodroplets on low adhesion surfaces. By using high-fidelity non-equilibrium molecular dynamics simulations in conjunction with well-resolved volume-of-fluid continuum calculations, we are able to quantify the different dissipation mechanisms that govern nanodroplet jumping at length scales that are currently difficult to access experimentally. We find that interfacial thermal capillary waves contribute to a large statistical spread of nanodroplet jumping speeds that range from 0-30 m s-1, where the typical jumping speeds of micro/millimeter sized droplets are only up to a few m s-1. As the gas surrounding these liquid droplets is no longer in thermodynamic equilibrium, we also show how the reduced external drag leads to increased jumping speeds. This work demonstrates that, in the viscous-dominated regime, the Ohnesorge number and viscosity ratio between the two phases alone are not sufficient, but that the thermal fluctuation number (Th) and the Knudsen number (Kn) are both needed to recover the relevant molecular physics at nanoscales. Our results and analysis suggest that these dimensionless parameters would be relevant for many other free-surface flow processes and applications that operate at the nanoscale.

5.
Phys Rev Lett ; 122(10): 104501, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932677

RESUMO

The classical notion of the coalescence of two droplets of the same radius R is that surface tension drives an initially singular flow. In this Letter we show, using molecular dynamics simulations of coalescing water nanodroplets, that after single or multiple bridges form due to the presence of thermal capillary waves, the bridge growth commences in a thermal regime. Here, the bridges expand linearly in time much faster than the viscous-capillary speed due to collective molecular jumps near the bridge fronts. Transition to the classical hydrodynamic regime only occurs once the bridge radius exceeds a thermal length scale l_{T}∼sqrt[R].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA