RESUMO
Nanoparticles (NPs) of iron oxide are dispersed in mixtures of water and ionic liquid, here ethylammonium nitrate (EAN), and the NP/NP and NP/solvent interactions are studied. They are analysed via small-angle X-ray scattering and dynamic light scattering coupled to forced Rayleigh scattering, from 22 °C to 80 °C. The NPs are well-dispersed as individual objects in the whole range of compositions and temperatures thanks to sufficient repulsion due to the organization of the solvents at the interface. The surface changes from hydrophilic to hydrophobic around a proportion of 50 vol% water : 50 vol% EAN, following the evolution of the bulk mixtures, which remain heterogeneous in the whole range of compositions.
RESUMO
Dispersions of charged maghemite nanoparticles (NPs) in EAN (ethylammonium nitrate) a reference Ionic Liquid (IL) are studied here using a number of static and dynamical experimental techniques; small angle scattering (SAS) of X-rays and of neutrons, dynamical light scattering and forced Rayleigh scattering. Particular insight is provided regarding the importance of tuning the ionic species present at the NP/IL interface. In this work we compare the effect of Li+, Na+ or Rb+ ions. Here, the nature of these species has a clear influence on the short-range spatial organisation of the ions at the interface and thus on the colloidal stability of the dispersions, governing both the NP/NP and NP/IL interactions, which are both evaluated here. The overall NP/NP interaction is either attractive or repulsive. It is characterised by determining, thanks to the SAS techniques, the second virial coefficient A2, which is found to be independent of temperature. The NP/IL interaction is featured by the dynamical effective charge ξeff0 of the NPs and by their entropy of transfer SNP (or equivalently their heat of transport ) determined here thanks to thermoelectric and thermodiffusive measurements. For repulsive systems, an activated process rules the temperature dependence of these two latter quantities.
RESUMO
HYPOTHESIS: Some of the most promising fields of application of ionic liquid-based colloids imply elevated temperatures. Their careful design and analysis is therefore essential. We assume that tuning the structure of the nanoparticle-ionic liquid interface through its composition can ensure colloidal stability for a wide temperature range, from room temperature up to 200 °C. EXPERIMENTS: The system under study consists of iron oxide nanoparticles (NPs) dispersed in ethylmethylimidazolium bistriflimide (EMIM TFSI). The key parameters of the solid-liquid interface, tuned at room temperature, are the surface charge density and the nature of the counterions. The thermal stability of these nanoparticle dispersions is then analysed on the short and long term up to 200 °C. A multiscale analysis is performed combining dynamic light scattering (DLS), small angle X-ray/neutron scattering (SAXS/SANS) and thermogravimetric analysis (TGA). FINDINGS: Following the proposed approach with a careful choice of the species at the solid-liquid interface, ionic liquid-based colloidal dispersions of iron oxide NPs in EMIM TFSI stable over years at room temperature can be obtained, also stable at least over days up to 200 °C and NPs concentrations up to 12 vol% (≈30 wt%) thanks to few near-surface ionic layers.
RESUMO
Ferrofluids based on maghemite nanoparticles (NPs), typically 10 nm in diameter, are dispersed in an ionic liquid (1-ethyl 3-methylimidazolium bistriflimide - EMIM-TFSI). The average interparticle interaction is found to be repulsive by small angle scattering of X-rays and of neutrons, with a second virial coefficient A2 = 7.3. A moderately concentrated sample at Φ = 5.95 vol% is probed by forced Rayleigh scattering under an applied magnetic field (up to H = 100 kA m-1) from room temperature up to T = 460 K. Irrespective of the values of H and T, the NPs in this study are always found to migrate towards the cold region. The in-field anisotropy of the mass diffusion coefficient Dm and that of the (always positive) Soret coefficient ST are well described by the presented model in the whole range of H and T. The main origin of anisotropy is the spatial inhomogeneities of concentration in the ferrofluid along the direction of the applied field. Since this effect originates from the magnetic dipolar interparticle interaction, the anisotropy of thermodiffusion progressively vanishes when temperature and thermal motion increase.
RESUMO
Exchange bias properties of MnFe[Formula: see text]O[Formula: see text]@[Formula: see text]-Fe[Formula: see text]O[Formula: see text] core-shell nanoparticles are investigated. The measured field and temperature dependencies of the magnetization point out a well-ordered ferrimagnetic core surrounded by a layer with spin glass-like arrangement. Quasi-static SQUID magnetization measurements are presented along with high-amplitude pulse ones and are cross-analyzed by comparison against ferromagnetic resonance experiments at 9 GHz. These measurements allow one to discern three types of magnetic anisotropies affecting the dynamics of the magnetic moment of the well-ordered ferrimagnetic NP's core viz. the easy-axis (uniaxial) anisotropy, the unidirectional exchange-bias anisotropy and the rotatable anisotropy. The uniaxial anisotropy originates from the structural core-shell interface. The unidirectional exchange-bias anisotropy is associated with the spin-coupling at the ferrimagnetic/spin glass-like interface; it is observable only at low temperatures after a field-cooling process. The rotatable anisotropy is caused by partially-pinned spins at the core/shell interface; it manifests itself as an intrinsic field always parallel to the external applied magnetic field. The whole set of experimental results is interpreted in the framework of superparamagnetic theory, i.e., essentially taking into account the effect of thermal fluctuations on the magnetic moment of the particle core. In particular, it is found that the rotatable anisotropy of our system is of a uniaxial type.
RESUMO
Stimuli-responsive compartments are attracting more and more attention through the years motivated by their wide applications in different fields including encapsulation, manipulation, and triggering of chemical reactions on demand. Among others, magnetic responsive compartments are particularly attractive due to the numerous advantages of magnetic fields compared to other external stimuli. In this article, we used an oil-based ferrofluid where the magnetic nanoparticles have been coated with different polymers to increase their amphiphilic character and surface activity, consequently rendering the interface magnetically responsive. Microliter aqueous nonmagnetic droplets dispersed in the oil-based ferrofluid were used as a model of microreactors. A comprehensive experimental and theoretical study of the deformation, attraction, and coalescence processes of the nonmagnetic water droplets coated with the magnetic nanoparticles under an applied magnetic field in the continuous oil-based ferrofluid phase is provided. To manipulate the packing of the nanoparticles at the water/oil interface, the ionic strength of the aqueous droplets was varied using different NaCl concentrations, and its effect on modulating the coalescence of the droplets was probed. Our results show that the water droplets deform along the magnetic field depending on the magnetic properties of the ferrofluid itself and on the surface properties of the interface, attract in pairs under the action of the magnetic dipole force, and coalesce by the action of the same force with a stochastic behavior. We have studied all of these phenomena as a function of the magnetic field applied, evaluating in each case the forces and/or pressures acting on the droplets with particular attention to roles of magnetic attraction, interface properties, and viscosity in the system. This work offers an overall set of tools to understand and predict the behavior of multiple water droplets in an oil-based ferrofluid for lab-on-a-chip applications.
RESUMO
The combination of ionic liquid and nanoparticle properties is highly appealing for a number of applications. However, thus far there has been limited systematic exploration of colloidal stabilisation in these solvents, which provides an initial direction towards their employment. Here, we present a new and comprehensive study of the key parameters affecting the colloidal stability in dispersions of oxide nanoparticles in ionic liquids. Twelve diverse and representative ionic liquids are used to disperse iron oxide nanoparticles. The liquid interface of these nanoparticles has been carefully tuned in a molecular solvent before transferring into an ionic liquid, without passing through the powder state. Multiscale-characterisation is applied, on both the micro and the nano scale, incorporating both small angle X-ray scattering and dynamic light scattering. The results show the surface charge of the nanoparticles to be a crucial parameter, controlling the layering of the surrounding ionic liquid, and hence producing repulsion allowing efficient counterbalancing of the attractive interactions. For intermediate charges the strength of the repulsion depends on the specific system causing varying levels of aggregation or even none at all. Several samples consist of sufficiently repulsive systems leading to single dispersed nanoparticles, stable in the long term. Thanks to the magnetic properties of the chosen iron oxide nanoparticles, true ferrofluids are produced, appropriate for applications using magnetic fields. The strength and breadth of the observed trends suggests that the key parameters identified here can be generalised to most ionic liquids.
RESUMO
Thermodiffusion properties at room temperature of colloidal dispersions of hydroxyl-coated nanoparticles (NPs) are probed in water, in dimethyl sulfoxide (DMSO) and in mixtures of water and DMSO at various proportions of water, [Formula: see text]. In these polar solvents, the positive NPs superficial charge imparts the systems with a strong electrostatic interparticle repulsion, slightly decreasing from water to DMSO, which is here probed by Small Angle Neutron Scattering and Dynamic Light Scattering. However if submitted to a gradient of temperature, the NPs dispersed in water with ClO4- counterions present a thermophilic behavior, the same NPs dispersed in DMSO with the same counterions present a thermophobic behavior. Mass diffusion coefficient [Formula: see text] and Ludwig-Soret coefficient [Formula: see text] are measured as a function of NP volume fraction [Formula: see text] at various [Formula: see text]. The [Formula: see text]-dependence of [Formula: see text] is analyzed in terms of thermoelectric and thermophoretic contributions as a function of [Formula: see text]. Using two different models for evaluating the Eastman entropy of transfer of the co- and counterions in the mixtures, the single-particle thermophoretic contribution (the NP's Eastman entropy of transfer) is deduced. It is found to evolve from negative in water to positive in DMSO. It is close to zero on a large range of [Formula: see text] values, meaning that in this [Formula: see text]-range [Formula: see text] largely depends on the thermoelectric effect of free co- and counterions.
RESUMO
Under a temperature gradient, the direction of thermodiffusion of charged γ-Fe2O3 nanoparticles (NPs) depends on the nature of the counter-ions present in the dispersion, resulting in either a positive or negative Soret coefficient. Various counter-ions are probed in finely tuned and well characterized dispersions of citrate-coated NPs at comparable concentrations of free ionic species. The Soret coefficient ST is measured in stationary conditions together with the mass-diffusion coefficient Dm using a forced Rayleigh scattering method. The strong interparticle repulsion, determined by SAXS, is also attested by the increase of Dm with NP volume fraction Φ. The Φ-dependence of ST is analyzed in terms of thermophoretic and thermoelectric contributions of the various ionic species. The obtained single-particle thermophoretic contribution of the NPs (the Eastman entropy of transfer sNP) varies linearly with the entropy of transfer of the counter-ions. This is understood in terms of electrostatic contribution and of hydration of the ionic shell surrounding the NPs. Two aqueous dispersions, respectively, with ST > 0 and with ST < 0 are then probed under an applied field H[combining right harpoon above], and an anisotropy of Dm and of ST is induced while the in-field system remains monophasic. Whatever the H[combining right harpoon above]-direction (parallel or perpendicular to the gradients and ), the Soret coefficient is modulated keeping the same sign as in zero applied field. In-field experimental determinations are well described using a mean field model of the interparticle magnetic interaction.
RESUMO
Thermodiffusion of different ferrite nanoparticles (NPs), â¼10 nm in diameter, is explored in tailor-made aqueous dispersions stabilized by electrostatic interparticle interactions. In the dispersions, electrosteric repulsion is the dominant force, which is tuned by an osmotic-stress technique, i.e. controlling of osmotic pressure Π, pH and ionic strength. It is then possible to map Π and the NPs' osmotic compressibility χ in the dispersion with a Carnahan-Starling formalism of effective hard spheres (larger than the NPs' core). The NPs are here dispersed with two different surface ionic species, either at pH â¼ 2 or 7, leading to a surface charge, either positive or negative. Their Ludwig-Soret ST coefficient together with their mass diffusion Dm coefficient are determined experimentally by forced Rayleigh scattering. All probed NPs display a thermophilic behavior (ST < 0) regardless of the ionic species used to cover the surface. We determine the NPs' Eastman entropy of transfer and the Seebeck (thermoelectric) contribution to the measured Ludwig-Soret coefficient in these ionic dispersions. The NPs' Eastman entropy of transfer sNP is interpreted through the electrostatic and hydration contributions of the ionic shell surrounding the NPs.
RESUMO
The Seebeck and Soret coefficients of ionically stabilized suspension of maghemite nanoparticles in dimethyl sulfoxide are experimentally studied as a function of nanoparticle volume fraction. In the presence of a temperature gradient, the charged colloidal nanoparticles experience both thermal drift due to their interactions with the solvent and electric forces proportional to the internal thermoelectric field. The resulting thermodiffusion of nanoparticles is observed through forced Rayleigh scattering measurements, while the thermoelectric field is accessed through voltage measurements in a thermocell. Both techniques provide independent estimates of nanoparticle's entropy of transfer as high as 82 meV K(-1). Such a property may be used to improve the thermoelectric coefficients in liquid thermocells.
RESUMO
The translational dynamics of a repulsive colloidal glass-former is probed by time-resolved X-ray Photon Correlation Spectroscopy. In this dense dispersion of charge-stabilized and magnetic nanoparticles, the interaction potential can be tuned, from quasi-isotropic to anisotropic by applying an external magnetic field. This powerful control parameter finely tunes the anisotropy of the intricate energy landscape in the colloidal glass-former, which is seen here as a new tunable model-system to probe the dynamical heterogeneities at the approach of the glass transition. Both structural and dynamical anisotropies are reported on interparticle lengthscales associated with highly anisotropic cooperativity, almost two orders of magnitude larger in the field direction than in the perpendicular direction and in zero field.
RESUMO
In order to better identify the key parameters governing colloidal stability in ionic liquids we probe the influence of the nature of the initial counterion of citrate-coated maghemite nanoparticles (NP), with Na(+), Li(+) and ethylammonium (EA(+)) on their dispersions in ethylammonium nitrate (EAN). Chemical analysis shows that sodium and lithium counterions remain at the nanoparticle surface after their transfer from water to EAN, despite their low concentration compared with EA(+). Macroscopically, all suspensions are stable over the range of volume fractions ΦNP tested (â¼ 1% to 8%). A microstructural study coupling small angle scattering and magneto-optic birefringence measurements shows that nanoparticles are perfectly dispersed with sodium counterions and interact through weak repulsions. Conversely, small clusters of a few nanoparticles are formed with lithium counterions, with the aggregation number increasing with ΦNP. However, such clusters are fragile; evidence that the attractions responsible for aggregation are of weak amplitude. Suspensions with EA(+) counterions show an intermediate behaviour. Our results demonstrate the determining role of initial counterions of the nanoparticles on the microstructure of colloidal dispersions in ionic liquids and therefore, the essential role of the interfacial zone between the solid and the liquid.
Assuntos
Coloides/química , Líquidos Iônicos/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Compostos de Amônio Quaternário/química , Íons/química , Teste de Materiais , Eletricidade EstáticaRESUMO
We synthesize giant magnetic liposomes by a reverse-phase evaporation method (REV) using a new self-assembling Cationic Pyridine Amphiphile (CPA) derived from 1,4-dihydropyridine as liposome-forming agent and a magnetic ferrofluid based on γ-Fe(2)O(3) nanoparticles. Having in view the potential interest of CPA in targeted transport by magnetic forces, the mechanical elastic properties of such bilayers are here directly investigated in vesicles loaded with magnetic nanoparticles. Bending elastic modulus K(b) â¼ 0.2 to 5k(B)T and pre-stress τ â¼ 3.2 to 12.10(-6) erg/cm(2) are deduced from the under-field deformations of the giant magnetic liposomes. The obtained K(b) values are discussed in terms of A. Wurgers's theory.
Assuntos
Di-Hidropiridinas/química , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Lipossomos/química , Campos Magnéticos , Fenômenos MecânicosRESUMO
We follow here the freezing of the orientational degrees of freedom of strongly interacting magnetic and charged nanoparticles, as the colloidal glass transition is approached. Using a magnetoinduced birefringence technique, we show that the rotational dynamics drastically slows down following a Vogel-Fulcher law. More precisely, this slowing down occurs above a volume fraction threshold phi*, the value of which depends on the range of electrostatic repulsion between nanoparticles. An interpretation in terms of effective spheres, slightly anisotropic, is proposed. The aging of the rotational dynamics of the more concentrated samples is reported on long time scales, with an exponential growth of the rotational characteristic time with the age t(w) of the sample. An attempt of age rescaling at different volume fractions leads us to introduce a phi-dependent "birth age" t(w)0(varphi) , which diverges analytically at the Vogel-Fulcher volume fraction.
RESUMO
Water-soluble clusters made from 7-nm inorganic nanoparticles have been investigated by small-angle neutron scattering. The internal structure factor of the clusters was derived and exhibited a universal behavior as evidenced by a correlation hole at intermediate wave vectors. Reverse Monte Carlo calculations were performed to adjust the data and provided an accurate description of the clusters in terms of interparticle distance and volume fraction. Additional parameters influencing the microstructure were also investigated, including the nature and thickness of the nanoparticle adlayer.
RESUMO
Magnetic and orientational behavior of nickel hydroxide nanoplatelets ionically stabilized in a liquid matrix is studied. Under an applied field the platelets orient their faces normal to its direction. For characterization of the individual behavior of dispersed and non-interacting particles three techniques are used: SAXS, SQUID and magneto-optics. Analysis reveals that nickel hydroxide in a platelet phase is paramagnetic with a pronounced anisotropy of the intrinsic susceptibility, the major component of which (in the direction normal to platelet face) exceeds the minor one by about 25%.
RESUMO
Repulsive magnetic fluids show a dynamical freezing above a volume fraction Φ(*), which depends on the physico-chemistry of the system. Φ(*) is here determined by a magneto-optical technique. The out-of-equilibrium dynamics of a glass-forming magnetic fluid (Φ = 1.2Φ(*)) is studied by x-ray photon correlation spectroscopy and analyzed in terms of intensity auto-correlation functions. The relaxation is age dependent and follows a compressed exponential law with a characteristic time scaling as the inverse of the scattering vector Q. The dynamical susceptibility χ is then deduced from a time resolved correlation analysis at an intermediate Q and for ages larger than 10(4) s.
RESUMO
The internal structure of biological vesicles filled with magnetic nanoparticles is investigated using the following complementary analyses: electronic transmission microscopy, dynamic probing by magneto-optical birefringence and structural probing by Small Angle Neutron Scattering (SANS). These magnetic vesicles are magnetic endosomes obtained via a non-specific interaction between cells and anionic magnetic iron oxide nanoparticles. Thanks to a magnetic purification process, they are probed at two different stages of their formation within HeLa cells: (i) adsorption of nanoparticles onto the cellular membrane and (ii) their subsequent internalisation within endosomes. Differences in the microenvironment of the magnetic nanoparticles at those two different stages are highlighted here. The dynamics of magnetic nanoparticles adsorbed onto cellular membranes and confined within endosomes is respectively 3 and 5 orders of magnitude slower than for isolated magnetic nanoparticles in aqueous media. Interestingly, SANS experiments show that magnetic endosomes have an internal structure close to decorated vesicles, with magnetic nanoparticles locally decorating the endosome membrane, inside their inner-sphere. These results, important for future biomedical applications, suggest that multiple fusions of decorated vesicles are the biological processes underlying the endocytosis of that kind of nanometric materials.
Assuntos
Biofísica/métodos , Endossomos/química , Magnetismo , Nanopartículas/química , Adsorção , Membrana Celular/metabolismo , Compostos Férricos/química , Células HeLa , Humanos , Íons , Modelos Estatísticos , Nanotecnologia/métodos , Nêutrons , Espalhamento de RadiaçãoRESUMO
This work describes the use of mesoporous SBA-15 silicas as hard templates for the size-controlled synthesis of oxide nanoparticles, with the pores acting as nanoscale reactors. This fundamental work is mainly aimed at understanding unresolved issues concerning the occurrence and size dependence of phase transitions in oxide nanocrystals. Aqueous solutions of Fe(NO3)3*9H2O are deposited inside the pores of SBA-15 silicas with mesopore diameters of 4.3, 6.6, and 9.5 nm. By calcination, the nitrate salt transforms into FeOx oxides. The XRD peaks of nanocrystals are broad and overlapping, resulting in ambiguities attributed to a given allotropic variety of Fe2O3 (alpha, epsilon, or gamma) or Fe3O4. The association of XRD, SAED, and Raman information is necessary to solve these ambiguities. The metastable gamma-Fe2O3 variety is selectively formed at low Fe/Si atomic ratio (ca. 0.20) and when a low calcination temperature is used (773 or 873 K followed by quenching to room temperature once the targeted temperature is reached). The small size dispersion of the patterned nanoparticles, suggested on a local scale by TEM, is confirmed statistically by magnetic measurements. The nanoparticles have a superparamagnetic behavior around room temperature. Their magnetic moments (from 220 to 370 mB), their sizes (from 4.0 to 4.8 nm), and their blocking temperatures (from 36 to 58 K) increase with the silica template mesopore diameter. Their magnetic properties are compared to those of standard gamma-Fe2O3 nanoparticles of similar size, obtained by coprecipitation in water and stabilized by a citrate coating.