RESUMO
Ferritins are globular proteins with an internal cavity that enables the encapsulation of a plethora of low-mass compounds. Unfortunately, the overall negative surface charge of ferritin's internal cavity hampers efficient loading of negatively charged molecules. Therefore, we produced a genetically engineered human H-chain ferritin containing a cationic RKRK domain, reversing the natural net charge of the cavity to positive, thus allowing for efficient encapsulation of negatively charged siRNA. Due to the reversed, positive charge mediated by RKRK domains, the recombinant ferritin produced in E. coli inherently carries a load of bacterial RNA inside its cavity, turning the protein into an effective sponge possessing high affinity for DNA/RNA-binding substances that can be loaded with markedly higher efficiency compared to the wildtype protein. Using doxorubicin as payload, we show that due to its loading through the RNA sponge, doxorubicin is released in a sustained manner, with a cytotoxicity profile similar to the free drug. In summary, this is the first report demonstrating a ferritin/nucleic acid hybrid delivery vehicle with a broad spectrum of properties exploitable in various fields of biomedical applications.
Assuntos
Apoferritinas , RNA , Humanos , Apoferritinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ferritinas/genética , Ferritinas/química , Doxorrubicina/farmacologia , Doxorrubicina/químicaRESUMO
Single-benzene fluorophores are bright and the smallest fluorochromes known so far. In single-benzene fluorophores, the fluorescence is mediated by the push/pull effect of substituting groups. Despite a plethora of advantageous properties, this group of molecules has not been extensively studied for design of high-performance fluorescent sensors of catalytic or enzymatic activities. Thus, herein, new fluorescent probes based on the Tsuji-Trost reaction were developed for the selective detection of palladium and other transition metals (platinum and gold) in an aqueous/organic mixed solvent with the sensitivity down to 2.5 nM (for palladium). The relative flexibility in the synthesis of these probes allows for facile color tuning of the emitted fluorescence. In this study, we have successfully utilized a yellow emission variant for sensitive detection of palladium under cell-free conditions and in living cells, validating its possible applicability for high-throughput optical sensing of catalysts for bioorthogonal chemistry under physiological conditions.
Assuntos
Paládio , Elementos de Transição , Benzeno , Corantes Fluorescentes/química , Paládio/química , Solventes , Sobrevivência CelularRESUMO
Recirculation of chronic lymphocytic leukemia (CLL) cells between the peripheral blood and lymphoid niches plays a critical role in disease pathophysiology, and inhibiting this process is one of the major mechanisms of action for B-cell receptor (BCR) inhibitors such as ibrutinib and idelalisib. Migration is a complex process guided by chemokine receptors and integrins. However, it remains largely unknown how CLL cells integrate multiple migratory signals while balancing survival in the peripheral blood and the decision to return to immune niches. Our study provided evidence that CXCR4/CD5 intraclonal subpopulations can be used to study the regulation of migration of CLL cells. We performed RNA profiling of CXCR4dimCD5bright vs CXCR4brightCD5dim CLL cells and identified differential expression of dozens of molecules with a putative function in cell migration. GRB2-associated binding protein 1 (GAB1) positively regulated CLL cell homing capacity of CXCR4brightCD5dim cells. Gradual GAB1 accumulation in CLL cells outside immune niches was mediated by FoxO1-induced transcriptional GAB1 activation. Upregulation of GAB1 also played an important role in maintaining basal phosphatidylinositol 3-kinase (PI3K) activity and the "tonic" AKT phosphorylation required to sustain the survival of resting CLL B cells. This finding is important during ibrutinib therapy, because CLL cells induce the FoxO1-GAB1-pAKT axis, which represents an adaptation mechanism to the inability to home to immune niches. We have demonstrated that GAB1 can be targeted therapeutically by novel GAB1 inhibitors, alone or in combination with BTK inhibition. GAB1 inhibitors induce CLL cell apoptosis, impair cell migration, inhibit tonic or BCR-induced AKT phosphorylation, and block compensatory AKT activity during ibrutinib therapy.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Movimento Celular , Proteína Forkhead Box O1/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Regulação para Cima , Adenina/análogos & derivados , Adenina/farmacologia , Linhagem Celular Tumoral , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Piperidinas/farmacologiaRESUMO
Allyl- and propargyl ethers of umbelliferone are sensitive probes for palladium and platinum, including anticancer compounds cisplatin, carboplatin and oxaliplatin, and effective for direct visualization of protein and DNA complexes with organometallic compounds in polyacrylamide gels allowing easy detection of interactions with analyzed protein or nucleic acid. Both probes can be used for fast evaluation of Pd/Pt binding to nanocarriers relevant in drug targeted therapy or specific clinically relevant target macromolecules.
Assuntos
DNA/química , Compostos Organoplatínicos/química , Paládio/química , Platina/química , Proteínas/química , Resinas AcrílicasRESUMO
Palladium and silver nanoparticles (NPs) anchored at the outer surface of ferritin form stable suspension of non-coated particles that possess several catalytic and enzymomimetic activities. These activities are strongly affected by detergents that significantly influence the reaction efficiency and specificity. Reductive dehalogenation of various azo dye substrates shows strong differences in reactivity for each substrate-detergent pair. Reductive dehalogenation is negatively influenced by cationic detergents while catalytic depropargylation is severely impaired by polyethylene oxide containing detergents that is an important finding in respect to potential biorthogonal applications. Moreover, Suzuki-Miyaura reaction is promoted by polyethylene oxide containing detergents but some of them also facilitate dehalogenation. Enzymomimetic peroxidase activity of silver NPs can be detected only in presence of sodium dodecyl sulfate (SDS) while peroxidase activity of palladium NPs is enhanced by SDS and sodium deoxycholate.
Assuntos
Biomimética , Detergentes/química , Ferritinas/metabolismo , Nanopartículas Metálicas/química , Peroxidase/metabolismo , Pyrococcus furiosus/metabolismo , Prata/metabolismo , Catálise , Ferritinas/química , Paládio/química , Paládio/metabolismo , Tamanho da Partícula , Peroxidase/química , Pyrococcus furiosus/química , Prata/química , Propriedades de SuperfícieRESUMO
The reductive discoloration of azo dye, Congo red, catalyzed by noble metal nanoparticles was used to visualize protein-metal complexes in native polyacrylamide gels after counterstaining with Coomassie blue. This technique was used to characterize the synthesis of palladium, rhodium and iridium nanoparticles encapsulated in Pyrococcus furiosus ferritin.
RESUMO
Antimicrobial peptides are currently considered as promising antiviral compounds. Current assays to evaluate the effectivity of peptides against enveloped viruses based on liposomes or hemolysis are encumbered by the artificial nature of liposomes or distinctive membrane composition of used erythrocytes. We propose a novel assay system based on enzymatic Ebola virus-like particles containing sensitive luciferase reporter. The assay was validated with several cationic and anionic peptides and compared with lentivirus inactivation and hemolytic assays. The assay is sensitive and easy to perform in standard biosafety level laboratory with potential for high-throughput screens. The use of virus-like particles in the assay provides a system as closely related to the native viruses as possible eliminating some issues associated with other more artificial set ups. We have identified CAM-W (KWKLWKKIEKWGQGIGAVLKWLTTWL) as a peptide with the greatest antiviral activity against infectious lentiviral vectors and filoviral virus-like particles.
Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/prevenção & controle , Peptídeos/farmacologia , Ânions , Antivirais/farmacologia , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Humanos , Lentivirus/efeitos dos fármacos , Lentivirus/genética , Lipossomos/química , Vacinas de Partículas Semelhantes a VírusRESUMO
Colorectal cancer is predominantly a disease of elderly people, since over 70% of cases occur in those aged 65 years or older. Clinicians have to frequently decide whether major surgery is justified in elderly patients with a limited life expectancy. Our retrospective study was aimed to compare outcomes of primary surgery for colorectal cancer in the elderly patient population. The evaluated data were collected from the 1st Department of Surgery, Charles University, and from all over the Czech Republic. Patients were divided into three groups: the young-old (21-59 years), the older-old (60-69 years), and the oldest-old (>69 years) patients. In the collective data the youngest and the oldest groups differ significantly in the rate of early postoperative complications (12.3% versus 17.6%, p<0.001). The number of complications associated with the emergency procedures was twice as high compared to elective surgery in all groups (p<0.001). There was no correlation between age and length of hospital stay in the single surgery department. These data suggest that major oncology procedures may be undertaken in older patients in whom operative risk is reasonable, with acceptable rates of complications.