RESUMO
Spironolactone (SPR), a mineralocorticoid receptor blocker, diminishes hyperglycemia-induced reduction in glucose-6-phosphate dehydrogenase (G6PD) activity, improving oxidative stress damage. This study investigated whether SPR ameliorates nephropathy by increasing G6PD activity and reducing oxidative stress in spontaneously hypertensive diabetic rats (SHRs). The streptozotocin-induced diabetic rats received or not SPR 50 mg/kg per day, for eight weeks. A human mesangial cell line was cultured in normal or high glucose conditions, with or without SPR, for 24 h. Plasma glucose levels and systolic blood pressure were unaltered by diabetes or by SPR treatment. Albuminuria, fibronectin expression, 8-OHdG urinary levels, lipid peroxidation and p47phox expression were higher in the diabetic rats compared with the control and were reduced by SPR. The antioxidant GSH/GSSG ratio was reduced in the diabetic rats and the treatment reestablished it. Diabetes-induced SGK1 up-regulation was inhibited by SPR. Reactive oxygen species (ROS) and superoxide production induced by NADPH oxidase were increased by hyperglycemia and high glucose, in vivo and in vitro, respectively, and were reduced with SPR. Hyperglycemia and high glucose decreased G6PD activity, which was restored with SPR. These results suggest that SPR ameliorates nephropathy in diabetic SHRs by restoring G6PD activity and diminishes oxidative stress without affecting glycaemia and blood pressure.
Assuntos
Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/enzimologia , Glucosefosfato Desidrogenase/metabolismo , Estresse Oxidativo , Espironolactona/uso terapêutico , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Dano ao DNA , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/patologia , Glucosefosfato Desidrogenase/antagonistas & inibidores , Dissulfeto de Glutationa/metabolismo , Humanos , Proteínas Imediatamente Precoces/metabolismo , Córtex Renal/efeitos dos fármacos , Córtex Renal/enzimologia , Córtex Renal/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/enzimologia , Células Mesangiais/patologia , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Modelos Biológicos , NADP/metabolismo , NADPH Oxidases/metabolismo , Oxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Endogâmicos SHR , Espironolactona/farmacologia , Superóxidos/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
AIMS: The presence of hypertension increases renal oxidative stress by increasing NADPH oxidase-dependent superoxide production and by decreasing antioxidant defense in the early stage of experimental diabetes mellitus (DM). In the present study, we investigated whether the administration of an antioxidant mimetic of the superoxide dismutase (SOD) (tempol) corrects the oxidative imbalance and oxidative stress-induced renal injury in the presence of DM and hypertension. METHODS: DM was induced in spontaneously hypertensive rats (SHR) by streptozotocin at 4 weeks of age. The diabetic rats either did or did not receive tempol for 20 days. Oxidative-stress parameters and indices of renal injury were evaluated. RESULTS: Tempol reestablished the imbalance in redox status induced by DM. It elevated the expression of renal antioxidant extracellular SOD, p < 0.0001; decreased (p = 0.049) the production of renal NADPH-dependent superoxide production, and diminished (p = 0.016) a marker of oxidative stress-induced DNA damage, 8-hydroxy-2'-deoxyguanosine. Reduction of oxidative stress markers was associated with reduction in renal damage parameters associated with DN. DM-induced albuminuria and elevation in renal expression of collagen IV were reduced to the level observed in control rats. CONCLUSION: We conclude that an imbalance in renal redox status is associated with markers of renal injury in the early stage of DM and hypertension. Antioxidant treatment reestablished the redox status and prevented oxidative stress-induced renal damage.