Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Int J Mol Sci ; 20(20)2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31635173

RESUMO

Longitudinal bone growth occurs through endochondral ossification (EO), controlled by various signaling molecules. Retinoid X Receptor (RXR) is a nuclear receptor with important roles in cell death, development, and metabolism. However, little is known about its role in EO. In this study, the agonist SR11237 was used to evaluate RXR activation in EO. Rats given SR11237 from post-natal day 5 to post-natal day 15 were harvested for micro-computed tomography (microCT) scanning and histology. In parallel, newborn CD1 mouse tibiae were cultured with increasing concentrations of SR11237 for histological and whole-mount evaluation. RXR agonist-treated rats had shorter long bones than the controls and developed dysmorphia of the growth plate. Cells invading the calcified and dysmorphic growth plate appeared pre-hypertrophic in size and shape, in correspondence with p57 immunostaining. Additionally, SOX9-positive cells were found surrounding the calcified tissue. The epiphysis of SR11237-treated bones showed increased TRAP staining and additional TUNEL staining at the osteo-chondral junction. MicroCT revealed morphological disorganization in the long bones of the treated animals. This study suggests that stimulation of RXR causes irregular ossification, premature closure of the growth plate, and disrupted long bone growth in rodent models.


Assuntos
Benzoatos/farmacologia , Desenvolvimento Ósseo/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Lâmina de Crescimento/efeitos dos fármacos , Receptores X de Retinoides/agonistas , Retinoides/farmacologia , Animais , Feminino , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
2.
PLoS One ; 10(11): e0142822, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26562438

RESUMO

BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease with poorly understood etiology and pathobiology. Mitogen activated protein kinases (MAPKs) including ERK and p38 play important roles in the mediation of downstream pathways involved in cartilage degenerative processes. Dual specificity phosphatase 1 (DUSP1) dephosphorylates the threonine/serine and tyrosine sites on ERK and p38, causing deactivation of downstream signalling. In this study we examined the role of DUSP1 in spontaneous OA development at 21 months of age using a genetically modified mouse model deficient in Dusp1 (DUSP1 knockout mouse). RESULTS: Utilizing histochemical stains of paraffin embedded knee joint sections in DUSP1 knockout and wild type female and male mice, we showed similar structural progression of cartilage degeneration associated with OA at 21 months of age. A semi-quantitative cartilage degeneration scoring system also demonstrated similar scores in the various aspects of the knee joint articular cartilage in DUSP1 knockout and control mice. Examination of overall articular cartilage thickness in the knee joint demonstrated similar results between DUSP1 knockout and wild type mice. Immunostaining for cartilage neoepitopes DIPEN, TEGE and C1,2C was similar in the cartilage lesion sites and chondrocyte pericellular matrix of both experimental groups. Likewise, immunostaining for phosphoERK and MMP13 showed similar intensity and localization between groups. SOX9 immunostaining demonstrated a decreased number of positive cells in DUSP1 knockout mice, with correspondingly decreased staining intensity. Analysis of animal walking patterns (gait) did not show a discernable difference between groups. CONCLUSION: Loss of DUSP1 does not cause changes in cartilage degeneration and gait in a mouse model of spontaneous OA at 21 months of age. Altered staining was observed in SOX9 immunostaining which may prove promising for future studies examining the role of DUSPs in cartilage and OA, as well as models of post-traumatic OA.


Assuntos
Cartilagem Articular/patologia , Condrócitos/patologia , Fosfatase 1 de Especificidade Dupla/genética , Articulação do Joelho/patologia , Osteoartrite/genética , Osteoartrite/patologia , Animais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Suscetibilidade a Doenças , Feminino , Técnicas de Inativação de Genes , Predisposição Genética para Doença , Articulação do Joelho/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA