Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
MAbs ; 14(1): 2007564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34965193

RESUMO

Rapid release of biopharmaceutical products enables a more efficient drug manufacturing process. Multi-attribute methods that target several product quality attributes (PQAs) at one time are an essential pillar of the rapid-release strategy. The novel, high-throughput, and nondestructive multi-attribute Raman spectroscopy (MARS) method combines Raman spectroscopy, design of experiments, and multivariate data analysis (MVDA). MARS allows the measurement of multiple PQAs for formulated protein therapeutics without sample preparation from a single spectroscopic scan. Variable importance in projection analysis is used to associate the chemical and spectral basis of targeted PQAs, which assists in model interpretation and selection. This study shows the feasibility of MARS for the measurement of both protein purity-related and formulation-related PQAs; measurements of protein concentration, osmolality, and some formulation additives were achieved by a generic multiproduct model for various protein products containing the same formulation components. MARS demonstrates the potential to be a powerful methodology to improve the efficiency of biopharmaceutical development and manufacturing, as it features fast turnaround time, good robustness, less human intervention, and potential for automation.


Assuntos
Anticorpos Monoclonais/química , Controle de Qualidade , Animais , Anticorpos Monoclonais/imunologia , Células CHO , Cricetulus , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Análise Espectral Raman
2.
MAbs ; 8(2): 331-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26655595

RESUMO

High-molecular weight aggregates such as antibody dimers and other side products derived from incorrect light or heavy chain association typically represent critical product-related impurities for bispecific antibody formats. In this study, an approach employing ultra-pressure liquid chromatography size-exclusion separation combined with native electrospray ionization mass spectrometry for the simultaneous formation, identification and quantification of size variants in recombinant antibodies was developed. Samples exposed to storage and elevated temperature(s) enabled the identification of various bispecific antibody size variants. This test system hence allowed us to study the variants formed during formulation and bio-process development, and can thus be transferred to quality control units for routine in-process control and release analytics. In addition, native SEC-UV/MS not only facilitates the detailed analysis of low-abundant and non-covalent size variants during process characterization/validation studies, but is also essential for the SEC-UV method validation prior to admission to the market.


Assuntos
Anticorpos Biespecíficos/química , Cromatografia em Gel , Agregados Proteicos , Anticorpos Biespecíficos/análise
3.
Biophys J ; 106(6): 1318-26, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24655507

RESUMO

Many transmembrane helices contain serine and/or threonine residues whose side chains form intrahelical H-bonds with upstream carbonyl oxygens. Here, we investigated the impact of threonine side-chain/main-chain backbonding on the backbone dynamics of the amyloid precursor protein transmembrane helix. This helix consists of a N-terminal dimerization region and a C-terminal cleavage region, which is processed by γ-secretase to a series of products. Threonine mutations within this transmembrane helix are known to alter the cleavage pattern, which can lead to early-onset Alzheimer's disease. Circular dichroism spectroscopy and amide exchange experiments of synthetic transmembrane domain peptides reveal that mutating threonine enhances the flexibility of this helix. Molecular dynamics simulations show that the mutations reduce intrahelical amide H-bonding and H-bond lifetimes. In addition, the removal of side-chain/main-chain backbonding distorts the helix, which alters bending and rotation at a diglycine hinge connecting the dimerization and cleavage regions. We propose that the backbone dynamics of the substrate profoundly affects the way by which the substrate is presented to the catalytic site within the enzyme. Changing this conformational flexibility may thus change the pattern of proteolytic processing.


Assuntos
Precursor de Proteína beta-Amiloide/química , Simulação de Dinâmica Molecular , Motivos de Aminoácidos , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Animais , Humanos , Ligação de Hidrogênio , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína
4.
Chembiochem ; 14(15): 1943-8, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24115334

RESUMO

Wobbly backbone: The backbone dynamics of the amyloid precursor protein (APP) transmembrane helix was compared to those of other transmembrane domains. In contrast to expectation, no above-average backbone dynamics was found for the APP transmembrane helix; the dynamics thus appears not to be optimized for cleavage.


Assuntos
Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Proteólise , Humanos , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
5.
J Am Chem Soc ; 135(4): 1317-29, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23265086

RESUMO

The etiology of Alzheimer's disease depends on the relative abundance of different amyloid-ß (Aß) peptide species. These peptides are produced by sequential proteolytic cleavage within the transmembrane helix of the 99 residue C-terminal fragment of the amyloid precursor protein (C99) by the intramembrane protease γ-secretase. Intramembrane proteolysis is thought to require local unfolding of the substrate helix, which has been proposed to be cleaved as a homodimer. Here, we investigated the backbone dynamics of the substrate helix. Amide exchange experiments of monomeric recombinant C99 and of synthetic transmembrane domain peptides reveal that the N-terminal Gly-rich homodimerization domain exchanges much faster than the C-terminal cleavage region. MD simulations corroborate the differential backbone dynamics, indicate a bending motion at a diglycine motif connecting dimerization and cleavage regions, and detect significantly different H-bond stabilities at the initial cleavage sites. Our results are consistent with the following hypotheses about cleavage of the substrate: First, the GlyGly hinge may precisely position the substrate within γ-secretase such that its catalytic center must start proteolysis at the known initial cleavage sites. Second, the ratio of cleavage products formed by subsequent sequential proteolysis could be influenced by differential extents of solvation and by the stabilities of H-bonds at alternate initial sites. Third, the flexibility of the Gly-rich domain may facilitate substrate movement within the enzyme during sequential proteolysis. Fourth, dimerization may affect substrate processing by decreasing the dynamics of the dimerization region and by increasing that of the C-terminal part of the cleavage region.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Termodinâmica , Secretases da Proteína Precursora do Amiloide/química , Peptídeos beta-Amiloides/síntese química , Peptídeos beta-Amiloides/química , Modelos Moleculares
6.
J Bacteriol ; 191(1): 152-60, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18931132

RESUMO

The cell envelopes of gram-positive bacteria contain structurally diverse membrane-anchored macroamphiphiles (lipoteichoic acids and lipoglycans) whose functions are poorly understood. Since regulation of membrane composition is an important feature of adaptation to life at higher temperatures, we have examined the nature of the macroamphiphiles present in the thermophilic actinomycetes Thermobifida fusca and Rubrobacter xylanophilus. Following hot-phenol-water extraction and purification by hydrophobic interaction chromatography, Western blotting with a monoclonal antibody against lipoteichoic acid strongly suggested the presence of a polyglycerophosphate lipoteichoic acid in T. fusca. This structure was confirmed by chemical and nuclear magnetic resonance analyses, which confirmed that the lipoteichoic acid is substituted with beta-glucosyl residues, in common with the teichoic acid of this organism. In contrast, several extraction methods failed to recover significant macroamphiphilic carbohydrate- or phosphate-containing material from R. xylanophilus, suggesting that this actinomycete most likely lacks a membrane-anchored macroamphiphile. The finding of a polyglycerophosphate lipoteichoic acid in T. fusca suggests that lipoteichoic acids may be more widely present in the cell envelopes of actinomycetes than was previously assumed. However, the apparent absence of macroamphiphiles in the cell envelope of R. xylanophilus is highly unusual and suggests that macroamphiphiles may not always be essential for cell envelope homeostasis in gram-positive bacteria.


Assuntos
Actinobacteria/metabolismo , Lipopolissacarídeos/metabolismo , Streptomycetaceae/metabolismo , Ácidos Teicoicos/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Parede Celular/metabolismo , Cromatografia Gasosa , Cromatografia por Troca Iônica , Ácidos Graxos/isolamento & purificação , Ácidos Graxos/metabolismo , Amplificação de Genes , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Lipopolissacarídeos/isolamento & purificação , Filogenia , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Streptococcus agalactiae/genética , Streptococcus agalactiae/isolamento & purificação , Streptococcus agalactiae/metabolismo , Streptomycetaceae/classificação , Streptomycetaceae/genética , Ácidos Teicoicos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA