Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36986823

RESUMO

INTRODUCTION: Silver nanoparticles (AgNPs) have a wide range of bioactivity, which is highly dependent on particle size, shape, stabilizer, and production method. Here, we present the results of studies of AgNPs cytotoxic properties obtained by irradiation treatment of silver nitrate solution and various stabilizers by accelerating electron beam in a liquid medium. METHODS: The results of studies of morphological characteristics of silver nanoparticles were obtained by transmission electron microscopy, UV-vis spectroscopy, and dynamic light scattering measurements. MTT test, alamar blue test, flow cytometry, and fluorescence microscopy were used to study the anti-cancer properties. As biological objects for standard tests, adhesive and suspension cell cultures of normal and tumor origin, including prostate cancer, ovarian cancer, breast cancer, colon cancer, neuroblastoma, and leukemia, were studied. RESULTS: The results showed that the silver nanoparticles obtained by irradiation with polyvinylpyrrolidone and collagen hydrolysate are stable in solutions. Samples with different stabilizers were characterized by a wide average size distribution from 2 to 50 nm and low zeta potential from -7.3 to +12.4 mV. All AgNPs formulations showed a dose-dependent cytotoxic effect on tumor cells. It has been established that the particles obtained with the combination of polyvinylpyrrolidone/collagen hydrolysate have a relatively more pronounced cytotoxic effect in comparison to samples stabilized with only collagen or only polyvinylpyrrolidone. The minimum inhibitory concentrations for nanoparticles were less than 1 µg/mL for various types of tumor cells. It was found that neuroblastoma (SH-SY5Y) is the most susceptible, and ovarian cancer (SKOV-3) is the most resistant to the action of silver nanoparticles. The activity of the AgNPs formulation prepared with a mixture of PVP and PH studied in this work was higher that activity of other AgNPs formulations reported in the literature by about 50 times. CONCLUSIONS: The results indicate that the AgNPs formulations synthesized with an electron beam and stabilized with polyvinylpyrrolidone and protein hydrolysate deserve deep study for their further use in selective cancer treatment without harming healthy cells in the patient organism.

2.
Materials (Basel) ; 15(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36295244

RESUMO

The technique of 3D scanning laser Doppler vibrometry has recently appeared as a promising tool of nondestructive evaluation of discontinuity-like defects in composite polymers. The use of the phenomenon of local defect resonance (LDR) allows intensifying vibrations in defect zones, which can reliably be detected by means of laser vibrometry. The resonance acoustic stimulation of structural defects in materials causes compression/tension deformations, which are essentially lower than the material tensile strength, thus proving a nondestructive character of the LDR technique. In this study, the propagation of elastic waves in composites and their interaction with structural inhomogeneities were analyzed by performing 3D scanning of vibrations in Fast Fourier Transform mode. At each scanning point, the in-plane (x, y) and out of plane (z) vibration components were analyzed. The acoustic stimulation was fulfilled by generating a frequency-modulated harmonic signal in the range from 50 Hz to 100 kHz. In the case of a reference plate with a flat bottom hole, the resonance frequencies for all (x, y, and z) components were identical. In the case of impact damage in a carbon fiber reinforced plastic sample, the predominant contribution into total vibrations was provided by compression/tension deformations (x, y vibration component) to compare with vibrations by the z coordinate. In general, inspection results were enhanced by analyzing total vibration patterns obtained by averaging results at some resonance frequencies.

3.
Nanomedicine ; 12(5): 1185-92, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26970026

RESUMO

In this work we have tested the potential antiviral activity of silver nanoparticles formulated as Argovit™ against Rift Valley fever virus (RVFV). The antiviral activity of Argovit was tested on Vero cell cultures and in type-I interferon receptor deficient mice (IFNAR (-/-) mice) by two different approaches: (i) different dilutions of Argovit were added to previously infected cells or administrated to animals infected with a lethal dose of virus; (ii) virus was pre-incubated with different dilutions of Argovit before inoculation in mice or cells. Though the ability of silver nanoparticles to control an ongoing RVFV infection in the conditions tested was limited, the incubation of virus with Argovit before the infection led to a reduction of the infectivity titers both in vitro and in vivo. These results reveal the potential application of silver nanoparticles to control the infectivity of RVFV, which is an important zoonotic pathogen.


Assuntos
Antivirais/farmacologia , Nanopartículas/uso terapêutico , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Prata/uso terapêutico , Animais , Camundongos , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA