Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105871

RESUMO

A nuclear retinoic acid receptor (RAR)-related orphan receptor ß (RORß) is strictly expressed in the brain, particularly in the pineal gland where melatonin is primarily synthesized and concentrated. The controversial issues regarding the direct interaction of melatonin toward ROR receptors have prompted us to investigate the potential melatonin binding sites on different ROR isoforms. We adopted computational and biophysical approaches to investigate the potential of melatonin as the ligand for RORs, in particular RORß. Herein, possible melatonin binding sites were predicted by molecular docking on human RORs. The results showed that melatonin might be able to bind within the ligand-binding domain (LBD) of all RORs, despite their difference in sequence homology. The predicted melatonin binding scores were comparable to binding energies with respect to those of melatonin interaction to the well-characterized membrane receptors, MT1 and MT2. Although the computational analyses suggested the binding potential of melatonin to the LBD of RORß, biophysical validation failed to confirm the binding. Melatonin was unable to alter the stability of human RORß as shown by the unaltered melting temperatures upon melatonin administration in differential scanning fluorometry (DSF). A thermodynamic isothermal titration calorimetry (ITC) profile showed that melatonin did not interact with human RORß in solutions, even in the presence of SRC-1 co-activator peptide. Although the direct interaction between the LBD of RORß could not be established, RORα and RORß gene expressions were increased upon 24 h treatment with µM-range melatonin. Our data, thus, support the studies that the nuclear effects of melatonin may not be directly mediated via its interaction with the RORß. These findings warrant further investigation on how melatonin interacts with ROR signaling and urge the melatonin research community for a paradigm shift in the direct interaction of melatonin toward RORs. The quest to identify nuclear receptors for melatonin in neuronal cells remains valid for the community to achieve.

2.
Microb Cell Fact ; 23(1): 216, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080612

RESUMO

BACKGROUND: D-psicose 3-epimerase (DPEase) is a potential catalytic enzyme for D-psicose production. D-psicose, also known as D-allulose, is a low-calorie sweetener that has gained considerable attention as a healthy alternative sweetener due to its notable physicochemical properties. This research focused on an in-depth investigation of the expression of the constructed DPEase gene from Agrobacterium tumefaciens in Escherichia coli for D-psicose synthesis. Experimentally, this research created the recombinant enzyme, explored the optimization of gene expression systems and protein purification strategies, investigated the enzymatic characterization, and then optimized the D-psicose production. Finally, the produced D-psicose syrup underwent acute toxicity evaluation to provide scientific evidence supporting its safety. RESULTS: The optimization of DPEase expression involved the utilization of Mn2+ as a cofactor, fine-tuning isopropyl ß-D-1-thiogalactopyranoside induction, and controlling the induction temperature. The purification process was strategically designed by a nickel column and an elution buffer containing 200 mM imidazole, resulting in purified DPEase with a notable 21.03-fold increase in specific activity compared to the crude extract. The optimum D-psicose conversion conditions were at pH 7.5 and 55 °C with a final concentration of 10 mM Mn2+ addition using purified DPEase to achieve the highest D-psicose concentration of 5.60% (w/v) using 25% (w/v) of fructose concentration with a conversion rate of 22.42%. Kinetic parameters of the purified DPEase were Vmax and Km values of 28.01 mM/min and 110 mM, respectively, which demonstrated the high substrate affinity and efficiency of DPEase conversion by the binding site of the fructose-DPEase-Mn2+ structure. Strategies for maintaining stability of DPEase activity were glycerol addition and storage at -20 °C. Based on the results from the acute toxicity study, there was no toxicity to rats, supporting the safety of the mixed D-fructose-D-psicose syrup produced using recombinant DPEase. CONCLUSIONS: These findings have direct and practical implications for the industrial-scale production of D-psicose, a valuable rare sugar with a broad range of applications in the food and pharmaceutical industries. This research should advance the understanding of DPEase biocatalysis and offers a roadmap for the successful scale-up production of rare sugars, opening new avenues for their utilization in various industrial processes.


Assuntos
Escherichia coli , Frutose , Proteínas Recombinantes , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Frutose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Agrobacterium tumefaciens , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Carboidratos Epimerases/isolamento & purificação , Animais , Racemases e Epimerases/metabolismo , Racemases e Epimerases/genética , Ratos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Sci Rep ; 14(1): 9262, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649402

RESUMO

Hepatitis B and C viruses (HBV and HCV) are significant causes of chronic liver diseases, with approximately 350 million infections globally. To accelerate the finding of effective treatment options, we introduce HBCVTr, a novel ligand-based drug design (LBDD) method for predicting the inhibitory activity of small molecules against HBV and HCV. HBCVTr employs a hybrid model consisting of double encoders of transformers and a deep neural network to learn the relationship between small molecules' simplified molecular-input line-entry system (SMILES) and their antiviral activity against HBV or HCV. The prediction accuracy of HBCVTr has surpassed baseline machine learning models and existing methods, with R-squared values of 0.641 and 0.721 for the HBV and HCV test sets, respectively. The trained models were successfully applied to virtual screening against 10 million compounds within 240 h, leading to the discovery of the top novel inhibitor candidates, including IJN04 for HBV and IJN12 and IJN19 for HCV. Molecular docking and dynamics simulations identified IJN04, IJN12, and IJN19 target proteins as the HBV core antigen, HCV NS5B RNA-dependent RNA polymerase, and HCV NS3/4A serine protease, respectively. Overall, HBCVTr offers a new and rapid drug discovery and development screening method targeting HBV and HCV.


Assuntos
Antivirais , Hepacivirus , Vírus da Hepatite B , Simulação de Acoplamento Molecular , Redes Neurais de Computação , Antivirais/farmacologia , Antivirais/química , Vírus da Hepatite B/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Humanos , Desenho de Fármacos , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Hepatite B/virologia , Hepatite B/tratamento farmacológico , Ligantes , Simulação de Dinâmica Molecular , Hepatite C/tratamento farmacológico , Hepatite C/virologia
4.
Arch Biochem Biophys ; 653: 24-38, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29940152

RESUMO

The first step in the degradation of p-hydroxyphenylacetic acid (HPA) is catalyzed by the two-component enzyme p-hydroxyphenylacetate 3-hydroxylase (HPAH). The two components of Acinetobacter baumannii HPAH are known as C1 and C2, respectively. C1 is a flavin reductase that uses NADH to generate reduced flavin mononucleotide (FMNH-), which is used by C2 in the hydroxylation of HPA. Interestingly, although HPA is not directly involved in the reaction catalyzed by C1, the presence of HPA dramatically increases the FMN reduction rate. Amino acid sequence analysis revealed that C1 contains two domains: an N-terminal flavin reductase domain, and a C-terminal MarR domain. Although MarR proteins typically function as transcription regulators, the MarR domain of C1 was found to play an auto-inhibitory role. Here, we report a crystal structure of C1 and small-angle X-ray scattering (SAXS) studies that revealed that C1 undergoes a substantial conformational change in the presence of HPA, concomitant with the increase in the rate of flavin reduction. Amino acid residues that are important for HPA binding and regulation of C1 activity were identified by site-directed mutagenesis. Amino acid sequence similarity analysis revealed several as yet uncharacterized flavin reductases with N- or C-terminal fusions.


Assuntos
Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/química , Flavinas/metabolismo , Oxigenases de Função Mista/química , Oxirredutases/química , Fenilacetatos/química , Sequência de Aminoácidos , Aminoácidos/química , Cristalografia por Raios X , Ligantes , Oxigenases de Função Mista/metabolismo , Mutagênese Sítio-Dirigida , NAD/química , Oxirredutases/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Espalhamento a Baixo Ângulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA