RESUMO
Transcription factor NF-κB potently activates anti-apoptotic genes, and its inactivation significantly reduces tumor cell survival following genotoxic stresses. We identified two structurally distinct lead compounds that selectively inhibit NF-κB activation by DNA double-strand breaks, but not by other stimuli, such as TNFα. Our compounds do not directly inhibit previously identified regulators of this pathway, most critically including IκB kinase (IKK), but inhibit signal transmission in-between ATM, PARP1, and IKKγ. Deconvolution strategies, including derivatization and in vitro testing in multi-kinase panels, yielded shared targets, cdc-like kinase (CLK) 2 and 4, as essential regulators of DNA damage-induced IKK and NF-κB activity. Both leads sensitize to DNA damaging agents by increasing p53-induced apoptosis, thereby reducing cancer cell viability. We propose that our lead compounds and derivatives can be used in context of genotoxic therapy-induced or ongoing DNA damage to increase tumor cell apoptosis, which may be beneficial in cancer treatment.
Assuntos
NF-kappa B , Transdução de Sinais , NF-kappa B/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , DNARESUMO
The mitogen-activated protein kinase kinase 4 (MKK4) plays a key role in liver regeneration and is under investigation as a target for stimulating hepatocytes to increased proliferation. Therefore, new small molecules inhibiting MKK4 may represent a promising approach for treating acute and chronic liver diseases. Fluorescently labeled compounds are useful tools for high-throughput screenings of large compound libraries. Here we utilized the azaindole-based scaffold of FDA-approved BRAF inhibitor vemurafenib 1, which displays off-target activity on MKK4, as a starting point in our fluorescent compound design. Chemical variation of the scaffold and optimization led to a selection of fluorescent 5-TAMRA derivatives which possess high binding affinities on MKK4. Compound 45 represents a suitable tool compound for Fluorescence polarization assays to identify new small-molecule inhibitors of MKK4.
Assuntos
Corantes Fluorescentes/química , Hepatopatias/tratamento farmacológico , MAP Quinase Quinase 4/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Bibliotecas de Moléculas Pequenas/química , Vemurafenib/síntese química , Carbolinas/química , Ensaios de Triagem em Larga Escala , Humanos , Indóis/química , Simulação de Acoplamento Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Vemurafenib/análogos & derivados , Vemurafenib/farmacologiaRESUMO
The master transcriptional regulator MYB is a key oncogenic driver in several human neoplasms, particularly in acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). MYB is therefore an attractive target for drug development in MYB-activated malignancies. Here, we employed a MYB-reporter cell line and identified the polyether ionophores monensin, salinomycin, and nigericin as novel inhibitors of MYB activity. As a proof of principle, we show that monensin affects the expression of a significant number of MYB-regulated genes in AML cells and causes down-regulation of MYB expression, loss of cell viability, and induction of differentiation and apoptosis. Furthermore, monensin significantly inhibits proliferation of primary murine AML cells but not of normal hematopoietic progenitors, reflecting a high MYB-dependence of leukemic cells and underscoring the efficacy of monensin in MYB-activated malignancies. Importantly, monensin also suppressed the viability and non-adherent growth of adenoid cystic carcinoma (ACC) cells expressing MYB-NFIB fusion oncoproteins. Our data show that a single compound with significant MYB-inhibitory activity is effective against malignant cells from two distinct MYB-driven human neoplasms. Hence, monensin and related compounds are promising molecular scaffolds for development of novel MYB inhibitors.
Assuntos
Carcinoma Adenoide Cístico/metabolismo , Regulação para Baixo , Leucemia Mieloide Aguda/metabolismo , Monensin/farmacologia , Proteínas Proto-Oncogênicas c-myb/metabolismo , Animais , Carcinoma Adenoide Cístico/dietoterapia , Carcinoma Adenoide Cístico/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Nigericina/farmacologia , Proteólise , Proteínas Proto-Oncogênicas c-myb/genética , Piranos/farmacologia , Células THP-1RESUMO
Osteoarthritis (OA) is one of the most common diseases in the aging population. While disease progress in humans is monitored indirectly by X-ray or MRI, small animal OA lesions detection always requires surgical intervention and histology. Here we introduce bimodal MR/NIR probes based on cartilage-targeting 1,4,7,10-tetraazacyclododecane 1,4,7,10-tetraacetic acid amide (DOTAM) that are directly administered to the joint cavity. We demonstrate applications in healthy and diseased rat joints by MRI in vivo. The same joints are inspected post-mortem by fluorescence microscopy, showing not only the precise location of the reagents but also revealing details such as focal cartilage damage and chondrophyte or osteophyte formation. This allows for determining the distinct pathological state of the disease and the regeneration capability of the animal model and will help to correctly assess the effect of potential disease modifying OA drugs (DMOADs) in the future.
RESUMO
Proteolytic activity of the mucosa-associated lymphoid tissue lymphoma translocation protein-1 (MALT1) paracaspase is required for survival of the activated B cell subtype of diffuse large B cell lymphoma (ABC-DLBCL). We have identified distinct derivatives of medicinal active phenothiazines, namely mepazine, thioridazine, and promazine, as small molecule inhibitors of the MALT1 protease. These phenothiazines selectively inhibit cleavage activity of recombinant and cellular MALT1 by a noncompetitive mechanism. Consequently, the compounds inhibit anti-apoptotic NF-κB signaling and elicit toxic effects selectively on MALT1-dependent ABC-DLBCL cells in vitro and in vivo. Our data provide a conceptual proof for a clinical application of distinct phenothiazines in the treatment of ABC-DLBCL.