Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Cogn Neurodyn ; 18(3): 1209-1214, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826666

RESUMO

The single macroscopic flow on the boundary of a closed curve equals the sum of the countless microscopic flows in the enclosed area. According to the dictates of the Green's theorem, the counterclockwise movements on the border of a two-dimensional shape must equal all the counterclockwise movements taking place inside the shape. This mathematical approach might be useful to analyse neuroscientific data sets for its potential capability to describe the whole cortical activity in terms of electric flows occurring in peripheral brain areas. Given a map of raw EEG data to coloured ovals in which different colours stand for different amplitudes, the theorem suggests that the sum of the electric amplitudes measured inside every oval equals the amplitudes measured just on the oval's edge. This means that the collection of the vector fields detected from the scalp can be described by a novel, single parameter summarizing the counterclockwise electric flow detected in the outer electrodes. To evaluate the predictive power of this parameter, in a pilot study we investigated EEG traces from ten young females performing Raven's intelligence tests of various complexity, from easy tasks (n = 5) to increasingly complex tasks (n = 5). Despite the seemingly unpredictable behavior of EEG electric amplitudes, the novel parameter proved to be a valuable tool to to discriminate between the two groups and detect hidden, statistically significant differences. We conclude that the application of this promising parameter could be expanded to assess also data sets extracted from neurotechniques other than EEG.

3.
Mov Disord Clin Pract ; 11(5): 504-514, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38469997

RESUMO

BACKGROUND: Magnetic resonance-guided focused ultrasound (MRgFUS) for treatment of essential tremor (ET) traditionally targets the ventral intermediate (Vim) nucleus. Recent strategies include a secondary lesion to the posterior subthalamic area (PSA). OBJECTIVE: The aim was to compare lesion characteristics, tremor improvement, and adverse events (AE) between patients in whom satisfactory tremor suppression was achieved with lesioning of the Vim alone and patients who required additional lesioning of the PSA. METHODS: Retrospective analysis of data collected from ET patients treated with MRgFUS at St Vincent's Hospital Sydney was performed. Clinical Rating Scale for Tremor (CRST), hand tremor score (HTS), and Quality of Life in Essential Tremor Questionnaire (QUEST) were collected pre- and posttreatment in addition to the prevalence of AEs. The lesion coordinates and overlap with the dentatorubrothalamic tract (DRTT) were evaluated using magnetic resonance imaging. RESULTS: Twenty-one patients were treated in Vim only, and 14 were treated with dual Vim-PSA lesions. Clinical data were available for 29 of the 35 patients (19 single target and 10 dual target). At follow-up (mean: 18.80 months) HTS, CRST, and QUEST in single-target patients improved by 57.97% (P < 0.001), 36.71% (P < 0.001), and 58.26% (P < 0.001), whereas dual-target patients improved by 68.34% (P < 0.001), 35.37% (P < 0.003), and 46.97% (P < 0.005), respectively. The Vim lesion of dual-target patients was further anterior relative to the posterior commissure (PC) (7.84 mm), compared with single-target patients (6.92 mm), with less DRTT involvement (14.85% vs. 23.21%). Dual-target patients exhibited a greater proportion of patients with acute motor AEs (100% vs. 58%); however, motor AE prevalence was similar in both groups at long-term follow-up (33% vs. 38%). CONCLUSION: Posterior placement of lesions targeting the Vim may confer greater tremor suppression. The addition of a PSA lesion, in patients with inadequate tremor control despite Vim lesioning, had a trend toward better long-term tremor suppression; however, this approach was associated with greater prevalence of gait disturbance in the short term.


Assuntos
Tremor Essencial , Imageamento por Ressonância Magnética , Núcleo Subtalâmico , Humanos , Tremor Essencial/terapia , Tremor Essencial/cirurgia , Tremor Essencial/diagnóstico por imagem , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Núcleo Subtalâmico/cirurgia , Núcleo Subtalâmico/diagnóstico por imagem , Resultado do Tratamento , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Núcleos Ventrais do Tálamo/cirurgia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/efeitos adversos , Qualidade de Vida , Adulto , Idoso de 80 Anos ou mais
4.
Exp Physiol ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308846

RESUMO

Circadian regulation of autonomic tone and reflex pathways pairs physiological processes with the daily light cycle. However, the underlying mechanisms mediating these changes on autonomic neurocircuitry are only beginning to be understood. The brainstem nucleus of the solitary tract (NTS) and adjacent nuclei, including the area postrema and dorsal motor nucleus of the vagus, are key candidates for rhythmic control of some aspects of the autonomic nervous system. Recent findings have contributed to a working model of circadian regulation in the brainstem which manifests from the transcriptional, to synaptic, to circuit levels of organization. Vagal afferent neurons and the NTS possess rhythmic clock gene expression, rhythmic action potential firing, and our recent findings demonstrate rhythmic spontaneous glutamate release. In addition, postsynaptic conductances also vary across the day producing subtle changes in membrane depolarization which govern synaptic efficacy. Together these coordinated pre- and postsynaptic changes provide nuanced control of synaptic transmission across the day to tune the sensitivity of primary afferent input and likely govern reflex output. Further, given the important role for the brainstem in integrating cues such as feeding, cardiovascular function and temperature, it may also be an underappreciated locus in mediating the effects of such non-photic entraining cues. This short review focuses on the neurophysiological principles that govern NTS synaptic transmission and how circadian rhythms impacted them across the day.

6.
Nat Commun ; 15(1): 744, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272877

RESUMO

The pathobiology of respiratory failure in COVID-19 consists of a complex interplay between viral cytopathic effects and a dysregulated host immune response. In critically ill patients, imatinib treatment demonstrated potential for reducing invasive ventilation duration and mortality. Here, we perform longitudinal profiling of 6385 plasma proteins in 318 hospitalised patients to investigate the biological processes involved in critical COVID-19, and assess the effects of imatinib treatment. Nine proteins measured at hospital admission accurately predict critical illness development. Next to dysregulation of inflammation, critical illness is characterised by pathways involving cellular adhesion, extracellular matrix turnover and tissue remodelling. Imatinib treatment attenuates protein perturbations associated with inflammation and extracellular matrix turnover. These proteomic alterations are contextualised using external pulmonary RNA-sequencing data of deceased COVID-19 patients and imatinib-treated Syrian hamsters. Together, we show that alveolar capillary barrier disruption in critical COVID-19 is reflected in the plasma proteome, and is attenuated with imatinib treatment. This study comprises a secondary analysis of both clinical data and plasma samples derived from a clinical trial that was registered with the EU Clinical Trials Register (EudraCT 2020-001236-10, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001236-10/NL ) and Netherlands Trial Register (NL8491, https://www.trialregister.nl/trial/8491 ).


Assuntos
COVID-19 , Humanos , Estado Terminal , SARS-CoV-2 , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Proteômica , Inflamação , Biomarcadores
7.
J Neurosurg ; 140(3): 648-656, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657096

RESUMO

OBJECTIVE: Skull density ratio (SDR) influences the permeability of the skull to the ultrasound waves used in magnetic resonance-guided focused ultrasound (MRgFUS) for the treatment of tremor. SDR values vary across the skull and the mean value is known to be predictive of sonication thermal increase. The aim of this investigation was to explore the effects of the SDR distribution on clinical outcomes following treatment with MRgFUS. METHODS: Data from 61 patients with essential or dystonic tremor treated with MRgFUS targeting the ventral intermediate nucleus (Vim) were retrospectively analyzed. Tremor suppression was assessed using the Clinical Rating Scale for Tremor (CRST) and hand tremor score (HTS). Vim ablation volume was measured on the T1-weighted MR image acquired both at 1 day and 12 months after treatment. The numerical distribution of SDR values measured for each element in the ultrasound transducer was quantified by calculating the mean, standard deviation, skewness, entropy, and kurtosis of the SDR histogram. The effect of the SDR metrics on change in CRST and HTS was examined using a linear mixed-effects model. Additionally, the effect of the regional distribution of SDR values was explored in an element-wise analysis between patients with above- and below-average tremor suppression. RESULTS: A significant positive effect was found between SDR kurtosis and improvement in CRST (ß = 0.33, p = 0.004) and HTS (ß = 0.38, p < 0.001). The effect was found to be significant at 1 month posttreatment (CRST: ß = 0.415, p = 0.008; HTS: ß = 0.369, p = 0.016), and at the most recent clinical follow-up (CRST: ß = 0.395, p < 0.001; HTS: ß = 0.386, p < 0.001). One hundred seventy-one significant elements were identified in the element-wise analysis. The mean percentage difference from the mean SDR in these elements was associated with improvement in CRST (ß = 0.27, p < 0.008) and HTS (ß = 0.27, p < 0.015). Higher SDR kurtosis was associated with increased lesion volume at 12 months (p = 0.040) and less reduction in volume relative to the day-1 lesion volume (p = 0.007). CONCLUSIONS: Greater SDR kurtosis was associated with larger, more stable lesions at 12 months posttreatment and increased tremor suppression at long-term follow-up. SDR kurtosis may provide a more meaningful prognostic factor than the mean SDR.


Assuntos
Cabeça , Tremor , Humanos , Estudos Retrospectivos , Tremor/diagnóstico por imagem , Tremor/terapia , Crânio , Ultrassonografia
8.
Am J Physiol Cell Physiol ; 326(1): C112-C124, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047304

RESUMO

The gut peptide cholecystokinin (CCK) is released during feeding and promotes satiation by increasing excitation of vagal afferent neurons that innervate the upper gastrointestinal tract. Vagal afferent neurons express CCK1 receptors (CCK1Rs) in the periphery and at central terminals in the nucleus of the solitary tract (NTS). While the effects of CCK have been studied for decades, CCK receptor signaling and coupling to membrane ion channels are not entirely understood. Previous findings have implicated L-type voltage-gated calcium channels as well as transient receptor potential (TRP) channels in mediating the effects of CCK, but the lack of selective pharmacology has made determining the contributions of these putative mediators difficult. The nonselective ion channel transient receptor potential vanilloid subtype 1 (TRPV1) is expressed throughout vagal afferent neurons and controls many forms of signaling, including spontaneous glutamate release onto NTS neurons. Here we tested the hypothesis that CCK1Rs couple directly to TRPV1 to mediate vagal signaling using fluorescent calcium imaging and brainstem electrophysiology. We found that CCK signaling at high concentrations (low-affinity binding) was potentiated in TRPV1-containing afferents and that TRPV1 itself mediated the enhanced CCK1R signaling. While competitive antagonism of TRPV1 failed to alter CCK1R signaling, TRPV1 pore blockade or genetic deletion (TRPV1 KO) significantly reduced the CCK response in cultured vagal afferents and eliminated its ability to increase spontaneous glutamate release in the NTS. Together, these results establish that TRPV1 mediates the low-affinity effects of CCK on vagal afferent activation and control of synaptic transmission in the brainstem.NEW & NOTEWORTHY Cholecystokinin (CCK) signaling via the vagus nerve reduces food intake and produces satiation, yet the signaling cascades mediating these effects remain unknown. Here we report that the capsaicin receptor transient receptor potential vanilloid subtype 1 (TRPV1) potentiates CCK signaling in the vagus and mediates the ability of CCK to control excitatory synaptic transmission in the nucleus of the solitary tract. These results may prove useful in the future development of CCK/TRPV1-based therapeutic interventions.


Assuntos
Ácido Glutâmico , Canais de Potencial de Receptor Transitório , Ácido Glutâmico/metabolismo , Núcleo Solitário , Neurônios Aferentes/metabolismo , Nervo Vago , Colecistocinina/farmacologia , Canais de Potencial de Receptor Transitório/metabolismo
9.
Mov Disord ; 39(1): 173-182, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964429

RESUMO

BACKGROUND: The current literature comparing outcomes after a unilateral magnetic resonance image-guided focused ultrasound (MRgFUS) thalamotomy between tremor syndromes is limited and remains a possible preoperative factor that could help predict the long-term outcomes. OBJECTIVE: The aim was to report on the outcomes between different tremor syndromes after a unilateral MRgFUS thalamotomy. METHODS: A total of 66 patients underwent a unilateral MRgFUS thalamotomy for tremor between November 2018 and May 2020 at St Vincent's Hospital Sydney. Each patient's tremor syndrome was classified prior to treatment. Clinical assessments, including the hand tremor score (HTS) and Quality of Life in Essential Tremor Questionnaire (QUEST), were performed at baseline and predefined intervals to 36 months. RESULTS: A total of 63 patients, comprising 30 essential tremor (ET), 24 dystonic tremor (DT), and 9 Parkinson's disease tremor (PDT) patients, returned for at least one follow-up. In the ET patients, at 24 months there was a 61% improvement in HTS and 50% improvement in QUEST compared to baseline. This is in comparison to PDT patients, where an initial benefit in HTS and QUEST was observed, which waned at each follow-up, remaining significant only up until 12 months. In the DT patients, similar results were observed to the ET patients: at 24 months there was a 61% improvement in HTS and 43% improvement in QUEST compared to baseline. CONCLUSION: These results support the use of unilateral MRgFUS thalamotomy for the treatment of DT, which appears to have a similar expected outcome to patients diagnosed with ET. Patients with PDT should be warned that there is a risk of treatment failure. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Tremor Essencial , Humanos , Resultado do Tratamento , Tremor Essencial/cirurgia , Tremor/cirurgia , Qualidade de Vida , Ultrassonografia de Intervenção/métodos , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Imageamento por Ressonância Magnética/métodos
10.
BMJ Neurol Open ; 5(2): e000522, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900622

RESUMO

Introduction: MRI-guided focused ultrasound (MRgFUS) thalamotomy provides an exciting development in the field of minimally invasive stereotactic neurosurgery. Current treatment options for focal hand dystonia are limited, with potentially more effective invasive stereotactic interventions, such as deep brain stimulation or lesional therapies, rarely used. The advent of minimally invasive brain lesioning provides a potentially safe and effective treatment approach with a recent pilot study establishing MRgFUS Vo-complex thalamotomy as an effective treatment option for focal hand dystonia. In this study, we undertake an open-label clinical trial to further establish MRgFUS Vo-complex thalamotomy as an effective treatment for focal hand dystonia with greater attention paid to potential motor costs associated with this treatment. To elucidate pathophysiology of dystonia and treatment mechanisms, neurophysiological and MRI analysis will be performed longitudinally to explore the hypothesis that neuroplastic and structural changes that may underlie this treatment benefit. Methods and analysis: A total of 10 participants will be recruited into this open-label clinical trial. All participants will undergo clinical, kinemetric, neurophysiological and radiological testing at baseline, followed by repeated measures at predesignated time points post MRgFUS Vo-complex thalamotomy. Further, to identify any underlying structural or neurophysiological abnormalities present in individuals with focal hand dystonia, 10 age and gender matched control participants will be recruited to undergo comparative investigation. These results will be compared with the intervention participants both at baseline and at 12 months to assess for normalisation of these abnormalities, if present. Ethics and dissemination: This trial was reviewed and approved by the St Vincent's Health Network Sydney Human Research Ethics Committee (2022/ETH00778). Study results will be published in peer-reviewed journals and presented at both national and international conferences. Trial registration number: CTRN12622000775718.

12.
Sci Adv ; 9(38): eadh0980, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37729419

RESUMO

Increasing the therapeutic potential and reducing the side effects of U.S. Food and Drug Administration-approved glucagon-like peptide-1 receptor (GLP-1R) agonists used to treat obesity require complete characterization of the central mechanisms that mediate both the food intake-suppressive and illness-like effects of GLP-1R signaling. Our studies, in the rat, demonstrate that GLP-1Rs in the locus coeruleus (LC) are pharmacologically and physiologically relevant for food intake control. Furthermore, agonism of LC GLP-1Rs induces illness-like behaviors, and antagonism of LC GLP-1Rs can attenuate GLP-1R-mediated nausea. Electrophysiological and behavioral pharmacology data support a role for LC GLP-1Rs expressed on presynaptic glutamatergic terminals in the control of feeding and malaise. Collectively, our work establishes the LC as a site of action for GLP-1 signaling and extends our understanding of the GLP-1 signaling mechanism necessary for the development of improved obesity pharmacotherapies.


Assuntos
Depressores do Apetite , Estados Unidos , Animais , Ratos , Locus Cerúleo , Obesidade/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Náusea
13.
Nat Commun ; 14(1): 5023, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596262

RESUMO

Blood cells contain functionally important intracellular structures, such as granules, critical to immunity and thrombosis. Quantitative variation in these structures has not been subjected previously to large-scale genetic analysis. We perform genome-wide association studies of 63 flow-cytometry derived cellular phenotypes-including cell-type specific measures of granularity, nucleic acid content and reactivity-in 41,515 participants in the INTERVAL study. We identify 2172 distinct variant-trait associations, including associations near genes coding for proteins in organelles implicated in inflammatory and thrombotic diseases. By integrating with epigenetic data we show that many intracellular structures are likely to be determined in immature precursor cells. By integrating with proteomic data we identify the transcription factor FOG2 as an early regulator of platelet formation and α-granularity. Finally, we show that colocalisation of our associations with disease risk signals can suggest aetiological cell-types-variants in IL2RA and ITGA4 respectively mirror the known effects of daclizumab in multiple sclerosis and vedolizumab in inflammatory bowel disease.


Assuntos
Estudo de Associação Genômica Ampla , Proteômica , Microscopia , Fatores de Transcrição , Causalidade
14.
Nat Immunol ; 24(9): 1540-1551, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563310

RESUMO

Circulating proteins have important functions in inflammation and a broad range of diseases. To identify genetic influences on inflammation-related proteins, we conducted a genome-wide protein quantitative trait locus (pQTL) study of 91 plasma proteins measured using the Olink Target platform in 14,824 participants. We identified 180 pQTLs (59 cis, 121 trans). Integration of pQTL data with eQTL and disease genome-wide association studies provided insight into pathogenesis, implicating lymphotoxin-α in multiple sclerosis. Using Mendelian randomization (MR) to assess causality in disease etiology, we identified both shared and distinct effects of specific proteins across immune-mediated diseases, including directionally discordant effects of CD40 on risk of rheumatoid arthritis versus multiple sclerosis and inflammatory bowel disease. MR implicated CXCL5 in the etiology of ulcerative colitis (UC) and we show elevated gut CXCL5 transcript expression in patients with UC. These results identify targets of existing drugs and provide a powerful resource to facilitate future drug target prioritization.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Esclerose Múltipla , Humanos , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/genética , Locos de Características Quantitativas , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Inflamação/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único
15.
AJPM Focus ; : 100125, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37362389

RESUMO

Introduction: To assess the effects of various non-pharmaceutical interventions (NPI) on cases, hospitalizations, and mortality during the first wave of the COVID-19 pandemic. Methods: To empirically investigate the impacts of different NPIs on COVID-19-related health outcomes, a systematic literature review was conducted. We studied the effects of 10 NPIs on cases, hospitalizations, and mortality across three periodic lags (2, 3, and 4 weeks-or-more following implementation). Articles measuring the impact of NPIs were sourced from three databases by May 10, 2022, and risk of bias was assessed using the Newcastle-Ottawa scale. Results: Across the 44 papers, we found that mask wearing corresponded to decreased per capita cases across all lags (up to -2.71 per 100,000). All NPIs studied except business and bar/restaurant closures corresponded to reduced case growth rates in the two weeks following implementation, while policy stringency and travelling restrictions were most effective after four. While we did not find evidence of reduced deaths in our per capita estimates, policy stringency, masks, SIPOs, limited gatherings, school and business closures were associated with decreased mortality growth rates. Moreover, the two NPIs studied in hospitalizations (SIPOs and mask wearing) showed negative estimates. Conclusions: When assessing the impact of NPIs, considering the duration of effectiveness following implementation has paramount significance. While some NPIs may reduce the COVID-19 impact, others can disrupt the mitigative progression of containing the virus. Policymakers should be aware of both the scale of their effectiveness and duration of impact when adopting these measures for future COVID-19 waves.

16.
Front Neurol ; 14: 1129430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181561

RESUMO

Objectives: Magnetic resonance-guided focussed ultrasound (MRgFUS) is an incisionless ablative procedure, widely used for treatment of Parkinsonian and Essential Tremor (ET). Enhanced understanding of the patient- and treatment-specific factors that influence sustained long-term tremor suppression could help clinicians achieve superior outcomes via improved patient screening and treatment strategy. Methods: We retrospectively analysed data from 31 subjects with ET, treated with MRgFUS at a single centre. Tremor severity was assessed with parts A, B and C of the Clinical Rating Scale for Tremor (CRST) as well as the combined CRST. Tremor in the dominant and non-dominant hand was assessed with Hand Tremor Scores (HTS), derived from the CRST. Pre- and post-treatment imaging data were analysed to determine ablation volume overlap with automated thalamic segmentations, and the dentatorubrothalamic tract (DRTT) and compared with percentage change in CRST and HTS following treatment. Results: Tremor symptoms were significantly reduced following treatment. Combined pre-treatment CRST (mean: 60.7 ± 17.3) and HTS (mean: 19.2 ± 5.7) improved by an average of 45.5 and 62.6%, respectively. Percentage change in CRST was found to be significantly negatively associated with age (ß = -0.375, p = 0.015), and SDR standard deviation (SDRSD; ß = -0.324, p = 0.006), and positively associated with ablation overlap with the posterior DRTT (ß = 0.535, p < 0.001). Percentage HTS improvement in the dominant hand decreased significantly with older age (ß = -0.576, p < 0.01). Conclusion: Our results suggest that increased lesioning of the posterior region of the DRTT could result in greater improvements in combined CRST and non-dominant hand HTS, and that subjects with lower SDR standard deviation tended to experience greater improvement in combined CRST.

17.
Kidney Int ; 104(3): 526-541, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37172690

RESUMO

The Banff Classification for Allograft Pathology includes the use of gene expression in the diagnosis of antibody-mediated rejection (AMR) of kidney transplants, but a predictive set of genes for classifying biopsies with 'incomplete' phenotypes has not yet been studied. Here, we developed and assessed a gene score that, when applied to biopsies with features of AMR, would identify cases with a higher risk of allograft loss. To do this, RNA was extracted from a continuous retrospective cohort of 349 biopsies randomized 2:1 to include 220 biopsies in a discovery cohort and 129 biopsies in a validation cohort. The biopsies were divided into three groups: 31 that fulfilled the 2019 Banff Criteria for active AMR, 50 with histological features of AMR but not meeting the full criteria (Suspicious-AMR), and 269 with no features of active AMR (No-AMR). Gene expression analysis using the 770 gene Banff Human Organ Transplant NanoString panel was carried out with LASSO Regression performed to identify a parsimonious set of genes predictive of AMR. We identified a nine gene score that was highly predictive of active AMR (accuracy 0.92 in the validation cohort) and was strongly correlated with histological features of AMR. In biopsies suspicious for AMR, our gene score was strongly associated with risk of allograft loss and independently associated with allograft loss in multivariable analysis. Thus, we show that a gene expression signature in kidney allograft biopsy samples can help classify biopsies with incomplete AMR phenotypes into groups that correlate strongly with histological features and outcomes.


Assuntos
Transplante de Rim , Humanos , Anticorpos , Biópsia , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/genética , Rejeição de Enxerto/patologia , Transplante de Rim/efeitos adversos , Estudos Retrospectivos
18.
Res Sq ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034613

RESUMO

Understanding the genetic basis of neuro-related proteins is essential for dissecting the molecular basis of human behavioral traits and the disease etiology of neuropsychiatric disorders. Here, the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,500 individuals for 184 neuro-related proteins in human plasma. The analysis identified 117 cis-regulatory protein quantitative trait loci (cis-pQTL) and 166 trans-pQTL. The mapped pQTL capture on average 50% of each protein's heritability. Mendelian randomization analyses revealed multiple proteins showing potential causal effects on neuro-related traits such as sleeping, smoking, feelings, alcohol intake, mental health, and psychiatric disorders. Integrating with established drug information, we validated 13 out of 13 matched combinations of protein targets and diseases or side effects with available drugs, while suggesting hundreds of re-purposing and new therapeutic targets. This consortium effort provides a large-scale proteogenomic resource for biomedical research on human behaviors and other neuro-related phenotypes.

19.
Nature ; 616(7955): 123-131, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36991119

RESUMO

The use of omic modalities to dissect the molecular underpinnings of common diseases and traits is becoming increasingly common. But multi-omic traits can be genetically predicted, which enables highly cost-effective and powerful analyses for studies that do not have multi-omics1. Here we examine a large cohort (the INTERVAL study2; n = 50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, n = 3,175; Olink, n = 4,822), plasma metabolomics (Metabolon HD4, n = 8,153), serum metabolomics (Nightingale, n = 37,359) and whole-blood Illumina RNA sequencing (n = 4,136), and use machine learning to train genetic scores for 17,227 molecular traits, including 10,521 that reach Bonferroni-adjusted significance. We evaluate the performance of genetic scores through external validation across cohorts of individuals of European, Asian and African American ancestries. In addition, we show the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of the UK Biobank3 to identify disease associations using a phenome-wide scan. We highlight a series of biological insights with regard to genetic mechanisms in metabolism and canonical pathway associations with disease; for example, JAK-STAT signalling and coronary atherosclerosis. Finally, we develop a portal ( https://www.omicspred.org/ ) to facilitate public access to all genetic scores and validation results, as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores.


Assuntos
Doença da Artéria Coronariana , Multiômica , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Metabolômica/métodos , Fenótipo , Proteômica/métodos , Aprendizado de Máquina , Negro ou Afro-Americano/genética , Asiático/genética , População Europeia/genética , Reino Unido , Conjuntos de Dados como Assunto , Internet , Reprodutibilidade dos Testes , Estudos de Coortes , Proteoma/análise , Proteoma/metabolismo , Metaboloma , Plasma/metabolismo , Bases de Dados Factuais
20.
J Physiol ; 601(10): 1881-1896, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36975145

RESUMO

Circadian regulation of autonomic reflex pathways pairs physiological function with the daily light cycle. The brainstem nucleus of the solitary tract (NTS) is a key candidate for rhythmic control of the autonomic nervous system. Here we investigated circadian regulation of NTS neurotransmission and synaptic throughput using patch-clamp electrophysiology in brainstem slices from mice. We found that spontaneous quantal glutamate release onto NTS neurons showed strong circadian rhythmicity, with the highest rate of release during the light phase and the lowest in the dark, that were sufficient to drive day/night differences in constitutive postsynaptic action potential firing. In contrast, afferent evoked action potential throughput was enhanced during the dark and diminished in the light. Afferent-driven synchronous release pathways showed a similar decrease in release probability that did not explain the enhanced synaptic throughput during the night. However, analysis of postsynaptic membrane properties revealed diurnal changes in conductance, which, when coupled with the circadian changes in glutamate release pathways, tuned synaptic throughput between the light and dark phases. These coordinated pre-/postsynaptic changes encode nuanced control over synaptic performance and pair NTS action potential firing and vagal throughput with time of day. KEY POINTS: Vagal afferent neurons relay information from peripheral organs to the brainstem nucleus of the solitary tract (NTS) to initiate autonomic reflex pathways as well as providing important controls of food intake, digestive function and energy balance. Vagally mediated reflexes and behaviours are under strong circadian regulation. Diurnal fluctuations in presynaptic vesicle release pathways and postsynaptic membrane conductances provide nuanced control over NTS action potential firing and vagal synaptic throughput. Coordinated pre-/postsynaptic changes represent a fundamental mechanism mediating daily changes in vagal afferent signalling and autonomic function.


Assuntos
Ritmo Circadiano , Ácido Glutâmico , Núcleo Solitário , Sinapses , Ritmo Circadiano/fisiologia , Ácido Glutâmico/metabolismo , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia , Sinapses/metabolismo , Neurônios Aferentes/metabolismo , Nervo Vago/citologia , Nervo Vago/fisiologia , Potenciais de Ação , Masculino , Animais , Camundongos , Gânglio Nodoso/metabolismo , Transdução de Sinais , Condutividade Elétrica , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA