Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Biol Chem ; 300(1): 105484, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992804

RESUMO

Sterols are hydrophobic molecules, known to cluster signaling membrane-proteins in lipid rafts, while methyl-ß-cyclodextrin (MßCD) has been a major tool for modulating membrane-sterol content for studying its effect on membrane proteins, including the transient receptor potential (TRP) channels. The Drosophila light-sensitive TRP channels are activated downstream of a G-protein-coupled phospholipase Cß (PLC) cascade. In phototransduction, PLC is an enzyme that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) generating diacylglycerol, inositol-tris-phosphate, and protons, leading to TRP and TRP-like (TRPL) channel openings. Here, we studied the effects of MßCD on Drosophila phototransduction using electrophysiology while fluorescently monitoring PIP2 hydrolysis, aiming to examine the effects of sterol modulation on PIP2 hydrolysis and the ensuing light-response in the native system. Incubation of photoreceptor cells with MßCD dramatically reduced the amplitude and kinetics of the TRP/TRPL-mediated light response. MßCD also suppressed PLC-dependent TRP/TRPL constitutive channel activity in the dark induced by mitochondrial uncouplers, but PLC-independent activation of the channels by linoleic acid was not affected. Furthermore, MßCD suppressed a constitutively active TRP mutant-channel, trpP365, suggesting that TRP channel activity is a target of MßCD action. Importantly, whole-cell voltage-clamp measurements from photoreceptors and simultaneously monitored PIP2-hydrolysis by translocation of fluorescently tagged Tubby protein domain, from the plasma membrane to the cytosol, revealed that MßCD virtually abolished the light response when having little effect on the light-activated PLC. Together, MßCD uncoupled TRP/TRPL channel gating from light-activated PLC and PIP2-hydrolysis suggesting the involvement of distinct nanoscopic lipid domains such as lipid rafts and PIP2 clusters in TRP/TRPL channel gating.


Assuntos
Proteínas de Drosophila , Lipídeos de Membrana , Canais de Potencial de Receptor Transitório , Fosfolipases Tipo C , beta-Ciclodextrinas , Animais , beta-Ciclodextrinas/farmacologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Lipídeos de Membrana/metabolismo , Células Fotorreceptoras de Invertebrados/efeitos dos fármacos , Células Fotorreceptoras de Invertebrados/metabolismo , Esteróis/metabolismo , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Fosfolipases Tipo C/metabolismo , Transdução de Sinal Luminoso/efeitos dos fármacos
2.
Int J Hyperthermia ; 40(1): 2272067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37875265

RESUMO

PURPOSE: Magnetic particle hyperthermia is an approved cancer treatment that harnesses thermal energy generated by magnetic nanoparticles when they are exposed to an alternating magnetic field (AMF). Thermal stress is either directly cytotoxic or increases the susceptibility of cancer cells to standard therapies, such as radiation. As with other thermal therapies, the challenge with nanoparticle hyperthermia is controlling energy delivery. Here, we describe the design and implementation of a prototype pre-clinical device, called HYPER, that achieves spatially confined nanoparticle heating within a user-selected volume and location. DESIGN: Spatial control of nanoparticle heating was achieved by placing an AMF generating coil (340 kHz, 0-15 mT), between two opposing permanent magnets. The relative positions between the magnets determined the magnetic field gradient (0.7 T/m-2.3 T/m), which in turn governed the volume of the field free region (FFR) between them (0.8-35 cm3). Both the gradient value and position of the FFR within the AMF ([-14, 14]x, [-18, 18]y, [-30, 30]z) mm are values selected by the user via the graphical user interface (GUI). The software then controls linear actuators that move the static magnets to adjust the position of the FFR in 3D space based on user input. Within the FFR, the nanoparticles generate hysteresis heating; however, outside the FFR where the static field is non-negligible, the nanoparticles are unable to generate hysteresis loss power. VERIFICATION: We verified the performance of the HYPER to design specifications by independently heating two nanoparticle-rich areas of a phantom placed within the volume occupied by the AMF heating coil.


Assuntos
Antineoplásicos , Hipertermia Induzida , Nanopartículas , Temperatura Alta , Campos Magnéticos
3.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047261

RESUMO

Physiological activation by light of the Drosophila TRP and TRP-like (TRPL) channels requires the activation of phospholipase Cß (PLC). The hydrolysis of phosphatidylinositol 4,5, bisphosphate (PIP2) by PLC is a crucial step in the still-unclear light activation, while the generation of Diacylglycerol (DAG) by PLC seems to be involved. In this study, we re-examined the ability of a DAG analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) to activate the TRPL channels expressed in HEK cells. Unlike previous studies, we added OAG into the cytosol via a patch-clamp pipette and observed robust activation of the expressed TRPL channels. However, TRPL channel activation was much slower than the physiologically activated TRPL by light. Therefore, we used a picosecond-fast optically activated DAG analogue, OptoDArG. Inactive OptoDArG was added into the intracellular solution with the patch-clamp pipette, and it slowly accumulated on the surface membrane of the recorded HEK cell in the dark. A fast application of intense UV light to the recorded cell resulted in a robust and relatively fast TRPL-dependent current that was greatly accelerated by the constitutively active TRPLF557I pore-region mutation. However, this current of the mutant channel was still considerably slower than the native light-induced TRPL current, suggesting that DAG alone is not sufficient for TRPL channel activation under physiological conditions.


Assuntos
Proteínas de Drosophila , Canais de Potencial de Receptor Transitório , Animais , Diglicerídeos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Luz , Membranas/metabolismo , Fosfatidilinositóis , Canais de Potencial de Receptor Transitório/metabolismo
4.
J Clin Invest ; 133(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454632

RESUMO

BACKGROUNDChronic pain is a debilitating illness with currently limited therapy, in part due to difficulties in translating treatments derived from animal models to patients. The transient receptor potential vanilloid 1 (TRPV1) channel is associated with noxious heat detection and inflammatory pain, and reports of adverse effects in human trials have hindered extensive efforts in the clinical development of TRPV1 antagonists as novel pain relievers.METHODSWe examined 2 affected individuals (A1 and A2) carrying a homozygous missense mutation in TRPV1, rendering the channel nonfunctional. Biochemical and functional assays were used to analyze the mutant channel. To identify possible phenotypes of the affected individuals, we performed psychophysical and medical examinations.RESULTSWe demonstrated that diverse TRPV1 activators, acting at different sites of the channel protein, were unable to open the cloned mutant channel. This finding was not a consequence of impairment in the expression, cellular trafficking, or assembly of protein subunits. The affected individuals were insensitive to application of capsaicin to the mouth and skin and did not demonstrate aversive behavior toward capsaicin. Furthermore, quantitative sensory testing of A1 revealed an elevated heat-pain threshold but also, surprisingly, an elevated cold-pain threshold and extensive neurogenic inflammatory, flare, and pain responses following application of the TRPA1 channel activator mustard oil.CONCLUSIONOur study provides direct evidence in humans for pain-related functional changes linked to TRPV1, which is a prime target in the development of pain relievers.FUNDINGSupported by the Israel Science Foundation (368/19); Teva's National Network of Excellence in Neuroscience grant (no. 0394886) and Teva's National Network of Excellence in Neuroscience postdoctoral fellowship.


Assuntos
Canais de Potencial de Receptor Transitório , Animais , Humanos , Capsaicina/farmacologia , Nociceptividade , Canais de Cátion TRPV/metabolismo , Dor/genética
5.
Healthcare (Basel) ; 10(12)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36554093

RESUMO

The goal of this study was to estimate the prevalence of spirometry testing among patients with asthma and chronic obstructive pulmonary disease (COPD) in general practices (GPs) in Germany. This retrospective cross-sectional study was based on data from the Disease Analyzer database (IQVIA), This retrospective cross-sectional study included all patients with at least one confirmed asthma or COPD diagnosis in one of those 50 general practices in Germany between January 2020, and January 2021, as well as at least one visit to these general practices between January 2021, and January 2022. The main outcomes of the study aimed to ascertain the proportion of spirometry testing among asthma and COPD patients between January 2021, and January 2022, overall, and separately, in men, women, six age groups (≤30, 31−40, 41−50, 51−60, 61, 70, >70), and patients who received at least one prescription of anti-asthma or anti-COPD drugs. This study included 8835 patients with asthma only, 5597 with COPD only, and 1897 with both asthma and COPD diagnoses. Of these, 27.2% of COPD patients, 7% of asthma patients, and 54.7% of asthma + COPD patients, received spirometry testing during the study period. Among COPD and asthma + COPD patients, the prevalence of spirometry testing was much higher in women than in men (COPD: 31.6% vs. 23.2%; asthma + COPD: 59.6% vs. 46.3%) and much higher in treated than in non-treated patients (COPD: 31.7% vs. 15.0%; asthma + COPD: 57.5% vs. 27.8%). The prevalence of spirometry testing was relatively low among COPD and asthma patients followed in GP practices, but usually higher in female patients, treated patients, and patients suffering from both asthma and COPD.

6.
J Clin Med ; 11(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956201

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is of high medical and socioeconomic relevance. Moderate and severe disease courses often require treatment with biologics. The aim of this study was to evaluate machine learning (ML)-based methods for the prediction of biologic therapy in IBD patients using a large prescription database. METHODS: The present retrospective cohort study utilized a longitudinal prescription database (LRx). Patients with at least one prescription for an intestinal anti-inflammatory agent from a gastroenterologist between January 2015 and July 2021 were included. Patients who had received an initial biologic therapy prescription (infliximab, adalimumab, golimumab, vedolizumab, or ustekinumab) were categorized as the "biologic group". The potential predictors included in the machine learning-based models were age, sex, and the 100 most frequently prescribed drugs within 12 months prior to the index date. Six machine learning-based methods were used for the prediction of biologic therapy. RESULTS: A total of 122,089 patients were included in this study. Of these, 15,824 (13.0%) received at least one prescription for a biologic drug. The Light Gradient Boosting Machine had the best performance (accuracy = 74%) and was able to correctly identify 78.5% of the biologics patients and 72.6% of the non-biologics patients in the testing dataset. The most important variable was prednisolone, followed by lower age, mesalazine, budesonide, and ferric iron. CONCLUSIONS: In summary, this study reveals the advantages of ML-based models in predicting biologic therapy in IBD patients based on pre-treatment and demographic variables. There is a need for further studies in this regard that take into account individual patient characteristics, i.e., genetics and gut microbiota, to adequately address the challenges of finding optimal treatment strategies for patients with IBD.

7.
Phys Med Biol ; 67(11)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35472698

RESUMO

Objective.Magnetic particle imaging (MPI) visualizes the spatial distribution of magnetic nanoparticles. MPI already provides excellent temporal and good spatial resolution, however, to achieve translation into clinics, further advances in the fields of sensitivity, image reconstruction and tracer performance are needed. In this work, we propose a novel concept to enhance the MPI signal and image resolution by a purely passive receive coil insert for a preclinical MPI system.Approach.The passive dual coil resonator (pDCR) provides frequency-selective signal enhancement. This is enabled by the adaptable resonance frequency of the pDCR network, which is galvanically isolated from the MPI system and composed of two coaxial solenoids connected via a capacitor. The pDCR aims to enhance frequency components related to high mixing orders, which are crucial to achieve high spatial resolution.Main Results.In this study, system matrix measurements and image acquisitions of a resolution phantom are carried out to evaluate the performance of the pDCR compared to the integrated receive unit of the preclinical MPI and a dedicated rat-sized receive coil. Frequency-selective signal increase and spatial resolution enhancement are demonstrated.Significance.Common dedicated receive coils come along with noise-matched receive networks, which makes them costly and difficult to reproduce. The presented pDCR is a purely passive coil insert that gets along without any additional receive electronics. Therefore, it is cost-efficient, easy-to-handle and adaptable to other MPI scanners and potentially other applications providing the basis for a new breed of passive MPI receiver systems.


Assuntos
Nanopartículas de Magnetita , Animais , Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador/métodos , Fenômenos Magnéticos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ratos
8.
Molecules ; 26(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801057

RESUMO

A cannabinoid anticancer para-quinone, HU-331, which was synthesized by our group five decades ago, was shown to have very high efficacy against human cancer cell lines in-vitro and against in-vivo grafts of human tumors in nude mice. The main mechanism was topoisomerase IIα catalytic inhibition. Later, several groups synthesized related compounds. In the present presentation, we review the publications on compounds synthesized on the basis of HU-331, summarize their published activities and mechanisms of action and report the synthesis and action of novel quinones, thus expanding the structure-activity relationship in these series.


Assuntos
Canabidiol/análogos & derivados , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Experimentais , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Quinonas , Inibidores da Topoisomerase II , Animais , Canabidiol/química , Canabidiol/uso terapêutico , DNA Topoisomerases Tipo II/metabolismo , Humanos , Camundongos , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/enzimologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Quinonas/química , Quinonas/uso terapêutico , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/uso terapêutico
9.
Nature ; 584(7821): 410-414, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641833

RESUMO

In metazoans, the secreted proteome participates in intercellular signalling and innate immunity, and builds the extracellular matrix scaffold around cells. Compared with the relatively constant intracellular environment, conditions for proteins in the extracellular space are harsher, and low concentrations of ATP prevent the activity of intracellular components of the protein quality-control machinery. Until now, only a few bona fide extracellular chaperones and proteases have been shown to limit the aggregation of extracellular proteins1-5. Here we performed a systematic analysis of the extracellular proteostasis network in Caenorhabditis elegans with an RNA interference screen that targets genes that encode the secreted proteome. We discovered 57 regulators of extracellular protein aggregation, including several proteins related to innate immunity. Because intracellular proteostasis is upregulated in response to pathogens6-9, we investigated whether pathogens also stimulate extracellular proteostasis. Using a pore-forming toxin to mimic a pathogenic attack, we found that C. elegans responded by increasing the expression of components of extracellular proteostasis and by limiting aggregation of extracellular proteins. The activation of extracellular proteostasis was dependent on stress-activated MAP kinase signalling. Notably, the overexpression of components of extracellular proteostasis delayed ageing and rendered worms resistant to intoxication. We propose that enhanced extracellular proteostasis contributes to systemic host defence by maintaining a functional secreted proteome and avoiding proteotoxicity.


Assuntos
Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Espaço Extracelular/metabolismo , Agregados Proteicos , Proteostase , Envelhecimento/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Sistema de Sinalização das MAP Quinases , Agregação Patológica de Proteínas/prevenção & controle , Proteoma/genética , Proteoma/metabolismo , Interferência de RNA
10.
Front Pharmacol ; 10: 1487, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920669

RESUMO

Changes of cholesterol level in the plasma membrane of cells have been shown to modulate ion channel function. The proposed mechanisms underlying these modulations include association of cholesterol to a single binding site at a single channel conformation, association to a highly flexible cholesterol binding site adopting multiple poses, and perturbation of lipid rafts. These perturbations have been shown to induce reversible targeting of mammalian transient receptor potential C (TRPC) channels to the cholesterol-rich membrane environment of lipid rafts. Thus, the observed inhibition of TRPC channels by methyl-ß-cyclodextrin (MßCD), which induces cholesterol efflux from the plasma membrane, may result from disruption of lipid rafts. This perturbation was also shown to disrupt multimolecular signaling complexes containing TRPC channels. The Drosophila TRP and TRP-like (TRPL) channels belong to the TRPC channel subfamily. When the Drosophila TRPL channel was expressed in S2 or HEK293 cells and perfused with MßCD, the TRPL current was abolished in less than 100 s, fitting well the fast kinetic phase of cholesterol sequestration experiments in cells. It was thus suggested that the fast kinetics of TRPL channel suppression by MßCD arise from disruption of lipid rafts. Accordingly, lipid raft perturbation by cholesterol sequestration could give clues to the function of lipid environment in TRPC channel activity and its mechanism.

11.
Curr Top Membr ; 80: 233-254, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28863818

RESUMO

Cholesterol is an essential compound of higher eukaryotic cell membranes and a known modulator of ion channel activity. Changes in phospholipids and cholesterol composition of cell membranes are known to alter the activity of ion channels. However, there is little knowledge on the effects of cholesterol on transient receptor potential (TRP) channels. In this study, we explore the effects of cholesterol depletion on the Drosophila photoreceptor channel TRP-like (TRPL), when expressed in tissue culture cells. Depletion of membrane cholesterol with methyl-ß-cyclodextrin (MßCD) induced fast (<100s) suppression of spontaneous TRPL channel activity, a typical state of expressed TRPL channels in Drosophila S2 cells. An equally fast suppression of receptor-induced TRPL channel activity in HEK293 cells, downstream of phospholipase C (PLC) activation, was also induced by MßCD. Biochemical experiments showed binding of TRPL to immobilized cholesterol, suggesting direct binding of cholesterol to TRPL. Exploring the effects of several mutations in a putative cholesterol-binding site of TRPL was inconclusive as some did not render the channel insensitive to cholesterol depletion while others rendered the channel inactive. We conclude that (i) cholesterol is essential for TRPL channel activity, (ii) TRPL channels interact with cholesterol, and (iii) the binding site of cholesterol in TRPL differs from the putative binding site of TRPV1. Thus, the fast and strong effects of cholesterol depletion on the TRPL channel activity suggest that cholesterol is an important component of fly photoreceptor signaling membrane.


Assuntos
Membrana Celular/metabolismo , Colesterol/deficiência , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Motivos de Aminoácidos , Animais , Colesterol/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Células HEK293 , Humanos , Mutação , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética
12.
J Biol Chem ; 292(9): 3624-3636, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28119450

RESUMO

The intrinsically photosensitive M1 retinal ganglion cells (ipRGC) initiate non-image-forming light-dependent activities and express the melanopsin (OPN4) photopigment. Several features of ipRGC photosensitivity are characteristic of fly photoreceptors. However, the light response kinetics of ipRGC is much slower due to unknown reasons. Here we used transgenic Drosophila, in which the mouse OPN4 replaced the native Rh1 photopigment of Drosophila R1-6 photoreceptors, resulting in deformed rhabdomeric structure. Immunocytochemistry revealed OPN4 expression at the base of the rhabdomeres, mainly at the rhabdomeral stalk. Measurements of the early receptor current, a linear manifestation of photopigment activation, indicated large expression of OPN4 in the plasma membrane. Comparing the early receptor current amplitude and action spectra between WT and the Opn4-expressing Drosophila further indicated that large quantities of a blue absorbing photopigment were expressed, having a dark stable blue intermediate state. Strikingly, the light-induced current of the Opn4-expressing fly photoreceptors was ∼40-fold faster than that of ipRGC. Furthermore, an intense white flash induced a small amplitude prolonged dark current composed of discrete unitary currents similar to the Drosophila single photon responses. The induction of prolonged dark currents by intense blue light could be suppressed by a following intense green light, suggesting induction and suppression of prolonged depolarizing afterpotential. This is the first demonstration of heterologous functional expression of mammalian OPN4 in the genetically emendable Drosophila photoreceptors. Moreover, the fast OPN4-activated ionic current of Drosophila photoreceptors relative to that of mouse ipRGC, indicates that the slow light response of ipRGC does not arise from an intrinsic property of melanopsin.


Assuntos
Escuridão , Células Fotorreceptoras de Invertebrados/metabolismo , Opsinas de Bastonetes/metabolismo , Animais , Animais Geneticamente Modificados , Membrana Celular/metabolismo , Ritmo Circadiano/fisiologia , Cor , Drosophila , Expressão Ectópica do Gene , Imuno-Histoquímica , Cinética , Luz , Camundongos , Fótons , Células Fotorreceptoras , Pigmentação
13.
J Neurosci ; 35(6): 2530-46, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25673847

RESUMO

Drosophila phototransduction is a model system for the ubiquitous phosphoinositide signaling. In complete darkness, spontaneous unitary current events (dark bumps) are produced by spontaneous single Gqα activation, while single-photon responses (quantum bumps) arise from synchronous activation of several Gqα molecules. We have recently shown that most of the spontaneous single Gqα activations do not produce dark bumps, because of a critical phospholipase Cß (PLCß) activity level required for bump generation. Surpassing the threshold of channel activation depends on both PLCß activity and cellular [Ca(2+)], which participates in light excitation via a still unclear mechanism. We show here that in IP3 receptor (IP3R)-deficient photoreceptors, both light-activated Ca(2+) release from internal stores and light sensitivity were strongly attenuated. This was further verified by Ca(2+) store depletion, linking Ca(2+) release to light excitation. In IP3R-deficient photoreceptors, dark bumps were virtually absent and the quantum-bump rate was reduced, indicating that Ca(2+) release from internal stores is necessary to reach the critical level of PLCß catalytic activity and the cellular [Ca(2+)] required for excitation. Combination of IP3R knockdown with reduced PLCß catalytic activity resulted in highly suppressed light responses that were partially rescued by cellular Ca(2+) elevation, showing a functional cooperation between IP3R and PLCß via released Ca(2+). These findings suggest that in contrast to the current dogma that Ca(2+) release via IP3R does not participate in light excitation, we show that released Ca(2+) plays a critical role in light excitation. The positive feedback between PLCß and IP3R found here may represent a common feature of the inositol-lipid signaling.


Assuntos
Drosophila/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Fosfolipase C beta/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Animais Geneticamente Modificados , Sinalização do Cálcio/fisiologia , Eletrorretinografia , Hipóxia/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Luz , Masculino , Técnicas de Patch-Clamp , Células Fotorreceptoras de Invertebrados/efeitos da radiação , Interferência de RNA
14.
FASEB J ; 28(3): 1181-97, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24285091

RESUMO

Bitter taste receptors (TAS2Rs) mediate aversive response to toxic food, which is often bitter. These G-protein-coupled receptors are also expressed in extraoral tissues, and emerge as novel targets for therapeutic indications such as asthma and infection. Our goal was to identify ligands of the broadly tuned TAS2R14 among clinical drugs. Molecular properties of known human bitter taste receptor TAS2R14 agonists were incorporated into pharmacophore- and shape-based models and used to computationally predict additional ligands. Predictions were tested by calcium imaging of TAS2R14-transfected HEK293 cells. In vitro testing of the virtual screening predictions resulted in 30-80% success rates, and 15 clinical drugs were found to activate the TAS2R14. hERG potassium channel, which is predominantly expressed in the heart, emerged as a common off-target of bitter drugs. Despite immense chemical diversity of known TAS2R14 ligands, novel ligands and previously unknown polypharmacology of drugs were unraveled by in vitro screening of computational predictions. This enables rational repurposing of traditional and standard drugs for bitter taste signaling modulation for therapeutic indications.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Células HEK293 , Humanos , Modelos Biológicos , Relação Estrutura-Atividade
15.
J Cell Sci ; 126(Pt 14): 3121-33, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23687378

RESUMO

Family members of the cationic transient receptor potential (TRP) channels serve as sensors and transducers of environmental stimuli. The ability of different TRP channel isoforms of specific subfamilies to form heteromultimers and the structural requirements for channel assembly are still unresolved. Although heteromultimerization of different mammalian TRP channels within single subfamilies has been described, even within a subfamily (such as TRPC) not all members co-assemble with each other. In Drosophila photoreceptors two TRPC channels, TRP and TRP-like protein (TRPL) are expressed together in photoreceptors where they generate the light-induced current. The formation of functional TRP-TRPL heteromultimers in cell culture and in vitro has been reported. However, functional in vivo assays have shown that each channel functions independently of the other. Therefore, the issue of whether TRP and TRPL form heteromultimers in vivo is still unclear. In the present study we investigated the ability of TRP and TRPL to form heteromultimers, and the structural requirements for channel assembly, by studying assembly of GFP-tagged TRP and TRPL channels and chimeric TRP and TRPL channels, in vivo. Interaction studies of tagged and native channels as well as native and chimeric TRP-TRPL channels using co-immunoprecipitation, immunocytochemistry and electrophysiology, critically tested the ability of TRP and TRPL to interact. We found that TRP and TRPL assemble exclusively as homomultimeric channels in their native environment. The above analyses revealed that the transmembrane regions of TRP and TRPL do not determine assemble specificity of these channels. However, the C-terminal regions of both TRP and TRPL predominantly specify the assembly of homomeric TRP and TRPL channels.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Animais Geneticamente Modificados , Sinalização do Cálcio , Proteínas de Drosophila/genética , Transdução de Sinal Luminoso , Mutação/genética , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica , Proteínas Recombinantes de Fusão/genética , Canais de Potencial de Receptor Transitório/genética , Visão Ocular/genética
16.
J Neurosci ; 32(42): 14696-708, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077055

RESUMO

Fly photoreceptors are polarized cells, each of which has an extended interface between its cell body and the light-signaling compartment, the rhabdomere. Upon intense illumination, rhabdomeric calcium concentration reaches millimolar levels that would be toxic if Ca(2+) diffusion between the rhabdomere and cell body was not robustly attenuated. Yet, it is not clear how such effective attenuation is obtained. Here we show that Ca(2+) homeostasis in the photoreceptor cell relies on the protein calphotin. This unique protein functions as an immobile Ca(2+) buffer localized along the base of the rhabdomere, separating the signaling compartment from the cell body. Generation and analyses of transgenic Drosophila strains, in which calphotin-expression levels were reduced in a graded manner, showed that moderately reduced calphotin expression impaired Ca(2+) homeostasis while calphotin elimination resulted in severe light-dependent photoreceptor degeneration. Electron microscopy, electrophysiology, and optical methods revealed that the degeneration was rescued by prevention of Ca(2+) overload via overexpression of CalX, the Na(+)-Ca(2+) exchanger. In addition, Ca(2+)-imaging experiments showed that reduced calphotin levels resulted in abnormally fast kinetics of Ca(2+) elevation in photoreceptor cells. Together, the data suggest that calphotin functions as a Ca(2+) buffer; a possibility that we directly demonstrate by expressing calphotin in a heterologous expression system. We propose that calphotin-mediated compartmentalization and Ca(2+) buffering constitute an effective strategy to protect cells from Ca(2+) overload and light-induced degeneration.


Assuntos
Cálcio/metabolismo , Compartimento Celular/fisiologia , Adaptação à Escuridão/fisiologia , Luz/efeitos adversos , Degeneração Retiniana/etiologia , Degeneração Retiniana/prevenção & controle , Animais , Animais Geneticamente Modificados , Soluções Tampão , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/patologia , Degeneração Retiniana/patologia
17.
J Neurotrauma ; 29(18): 2831-4, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-22994850

RESUMO

Death of Central Nervous System (CNS) neurons following traumatic brain injury (TBI) is a complex process arising from a combination of factors, many of which are still unknown. It has been found that inhibition of transient receptor potential (TRP) channels constitutes an effective strategy for preventing death of CNS neurons following TBI. TRP channels are classified into seven related subfamilies, most of which are Ca(2+) permeable and involved in many cellular functions, including neuronal cell death. We hypothesized that TRP channels of the TRPC subfamily may be involved in post-TBI pathophysiology and that the compound 5-isopropyl-2-methylphenol (carvacrol), by inhibition of TRP channels, may exert neuroprotective effect after TBI. To test these suppositions, carvacrol was given to mice after TBI and its effect on their functional recovery was followed for several weeks. Our results show that neurological recovery after TBI was significantly enhanced by application of carvacrol. To better define the type of the specific channel involved, the effect of carvacrol on the extent and speed of recovery after TBI was compared among mice lacking TRPC1, TRPC3, or TRPC5, relative to wild type controls. We found that neurological recovery after TBI was significantly enhanced by combining carvacrol with TRPC1 elimination, but not by the absence of TRPC3 or TRPC5, showing a synergistic effect between carvacrol application and TRPC1 elimination. We conclude that TRPC1-sensitive mechanisms are involved in TBI pathology, and that inhibition of this channel by carvacrol enhances recovery and should be considered for further studies in animal models and humans.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/genética , Monoterpenos/farmacologia , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/fisiologia , Animais , Atenção/fisiologia , Comportamento Animal/fisiologia , Cimenos , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoterpenos/administração & dosagem , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Ratos , Recuperação de Função Fisiológica , Reflexo/fisiologia , Canais de Cátion TRPC/antagonistas & inibidores
19.
Channels (Austin) ; 3(3): 164-6, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19535910

RESUMO

Open channel block (OCB) is a process by which ions bind to the inside of a channel pore and block the flow of ions through that channel. Repulsion of the blocking ions by membrane depolarization is a known mechanism for open channel block removal. For the N-methyl-D-aspartate (NMDA) channel, this mechanism is necessary for channel activation and is involved in neuronal plasticity. Several types of Transient Receptor Potential (TRP) channels, including the Drosophila TRP and TRP-Like (TRPL) channels, also exhibit open channel block. For the Drosophila TRP and TRPL channels, removal of open channel block is necessary for the production of the physiological response to light. Recently, we have shown that lipids such as polyunsaturated fatty acids (PUFAs), represented by linoleic acid (LA), alleviate OCB under physiological conditions, from the Drosophila TRP and TRPL channels and from the mammalian NMDA channel. Here we show that OCB removal by LA is not confined to the Drosophila TRPs but also applies to mammalian TRPs such as the heat activated TRPV3 channel. TRPV3 shows OCB alleviation by LA, although it shares little amino acid sequence homology with the Drosophila TRPs. Strikingly, LA inhibits the heat-activated TRPV1 and the cold temperature-activated TRPM8 channels, which are intrinsic voltage sensitive channels and do not show OCB. Together, our findings further support the notion that lipids do not act as second messengers by direct binding to a specific site of the channels but rather act indirectly by affecting the channel-plasma membrane interface.


Assuntos
Membrana Celular/metabolismo , Ácido Linoleico/farmacologia , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Animais , Temperatura Baixa , Drosophila , Humanos , Ácido Linoleico/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
20.
Cell Calcium ; 45(3): 300-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19135721

RESUMO

Transient receptor potential (TRP) channels are essential components of biological sensors that detect changes in the environment in response to a myriad of stimuli. A major difficulty in the study of TRP channels is the lack of pharmacological agents that modulate most members of the TRP superfamily. Notable exceptions are the thermoTRPs, which respond to either cold or hot temperatures and are modulated by a relatively large number of chemical agents. In the present study we demonstrate by patch clamp whole cell recordings from Schneider 2 and Drosophila photoreceptor cells that carvacrol, a known activator of the thermoTRPs, TRPV3 and TRPA1 is an inhibitor of the Drosophila TRPL channels, which belongs to the TRPC subfamily. We also show that additional activators of TRPV3, thymol, eugenol, cinnamaldehyde and menthol are all inhibitors of the TRPL channel. Furthermore, carvacrol also inhibits the mammalian TRPM7 heterologously expressed in HEK cells and ectopically expressed in a primary culture of CA3-CA1 hippocampal brain neurons. This study, thus, identifies a novel inhibitor of TRPC and TRPM channels. Our finding that the activity of the non-thermoTRPs, TRPL and TRPM7 channels is modulated by the same compound as thermoTRPs, suggests that common mechanisms of channel modulation characterize TRP channels.


Assuntos
Proteínas de Drosophila/antagonistas & inibidores , Drosophila melanogaster/metabolismo , Mamíferos/metabolismo , Monoterpenos/farmacologia , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacologia , Animais , Canfanos/química , Canfanos/farmacologia , Células Cultivadas , Monoterpenos Cicloexânicos , Cimenos , Eugenol/química , Eugenol/farmacologia , Hipocampo/citologia , Humanos , Mentol/química , Mentol/farmacologia , Monoterpenos/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/efeitos dos fármacos , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Serina-Treonina Quinases , Timol/química , Timol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA