Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Microbiol Spectr ; : e0381623, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874407

RESUMO

Proteins encoded by the ESX-1 genes of interest are essential for full virulence in all Mycobacterium tuberculosis complex (Mtbc) lineages, the pathogens causing the highest mortality worldwide. Identifying critical regions in these ESX-1-related proteins could provide preventive or therapeutic targets for Mtb infection, the game changer needed for tuberculosis control. We analyzed a compendium of whole genome sequences of clinical Mtb isolates from all lineages from >32,000 patients and identified single nucleotide polymorphisms. When mutations corresponding to all non-synonymous single nucleotide polymorphisms were mapped on structural models of the ESX-1 proteins, fully conserved regions emerged. Some could be assigned to known quaternary structures, whereas others could be predicted to be involved in yet-to-be-discovered interactions. Some mutants had clonally expanded (found in >1% of the isolates); these mutants were mostly located at the surface of globular domains, remote from known intra- and inter-molecular protein-protein interactions. Fully conserved intrinsically disordered regions of proteins were found, suggesting that these regions are crucial for the pathogenicity of the Mtbc. Altogether, our findings highlight fully conserved regions of proteins as attractive vaccine antigens and drug targets to control Mtb virulence. Extending this approach to the whole Mtb genome as well as other microorganisms will enhance vaccine development for various pathogens. IMPORTANCE: We mapped all non-synonymous single nucleotide polymorphisms onto each of the experimental and predicted ESX-1 proteins' structural models and inspected their placement. Varying sizes of conserved regions were found. Next, we analyzed predicted intrinsically disordered regions within our set of proteins, finding two putative long stretches that are fully conserved, and discussed their potential essential role in immunological recognition. Combined, our findings highlight new targets for interfering with Mycobacterium tuberculosis complex virulence.

2.
Biochim Biophys Acta Bioenerg ; 1865(3): 149045, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614453

RESUMO

Cytochrome bo3 quinol oxidase belongs to the heme­copper-oxidoreductase (HCO) superfamily, which is part of the respiratory chain and essential for cell survival. While the reaction mechanism of cyt bo3 has been studied extensively over the last decades, specific details about its substrate binding and product release have remained unelucidated due to the lack of structural information. Here, we report a 2.8 Å cryo-electron microscopy structure of cyt bo3 from Escherichia coli assembled in peptidiscs. Our structural model shows a conformation for amino acids 1-41 of subunit I different from all previously published structures while the remaining parts of this enzyme are similar. Our new conformation shows a "U-shape" assembly in contrast to the transmembrane helix, named "TM0", in other reported structural models. However, TM0 blocks ubiquinone-8 (reaction product) release, suggesting that other cyt bo3 conformations should exist. Our structural model presents experimental evidence for an "open" conformation to facilitate substrate/product exchange. This work helps further understand the reaction cycle of this oxidase, which could be a benefit for potential drug/antibiotic design for health science.


Assuntos
Microscopia Crioeletrônica , Grupo dos Citocromos b , Proteínas de Escherichia coli , Escherichia coli , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/enzimologia , Grupo dos Citocromos b/química , Grupo dos Citocromos b/metabolismo , Conformação Proteica , Modelos Moleculares , Citocromos/química , Citocromos/metabolismo
3.
Acta Crystallogr D Struct Biol ; 80(Pt 4): 232-246, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488730

RESUMO

Single-particle cryo-electron microscopy has become a widely adopted method in structural biology due to many recent technological advances in microscopes, detectors and image processing. Before being able to inspect a biological sample in an electron microscope, it needs to be deposited in a thin layer on a grid and rapidly frozen. The VitroJet was designed with this aim, as well as avoiding the delicate manual handling and transfer steps that occur during the conventional grid-preparation process. Since its creation, numerous technical developments have resulted in a device that is now widely utilized in multiple laboratories worldwide. It features plasma treatment, low-volume sample deposition through pin printing, optical ice-thickness measurement and cryofixation of pre-clipped Autogrids through jet vitrification. This paper presents recent technical improvements to the VitroJet and the benefits that it brings to the cryo-EM workflow. A wide variety of applications are shown: membrane proteins, nucleosomes, fatty-acid synthase, Tobacco mosaic virus, lipid nanoparticles, tick-borne encephalitis viruses and bacteriophages. These case studies illustrate the advancement of the VitroJet into an instrument that enables accurate control and reproducibility, demonstrating its suitability for time-efficient cryo-EM structure determination.


Assuntos
Proteínas de Membrana , Manejo de Espécimes , Microscopia Crioeletrônica/métodos , Reprodutibilidade dos Testes , Manejo de Espécimes/métodos , Processamento de Imagem Assistida por Computador
4.
Cell Stem Cell ; 31(2): 227-243.e12, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215738

RESUMO

The conjunctival epithelium covering the eye contains two main cell types: mucus-producing goblet cells and water-secreting keratinocytes, which present mucins on their apical surface. Here, we describe long-term expanding organoids and air-liquid interface representing mouse and human conjunctiva. A single-cell RNA expression atlas of primary and cultured human conjunctiva reveals that keratinocytes express multiple antimicrobial peptides and identifies conjunctival tuft cells. IL-4/-13 exposure increases goblet and tuft cell differentiation and drastically modifies the conjunctiva secretome. Human NGFR+ basal cells are identified as bipotent conjunctiva stem cells. Conjunctival cultures can be infected by herpes simplex virus 1 (HSV1), human adenovirus 8 (hAdV8), and SARS-CoV-2. HSV1 infection was reversed by acyclovir addition, whereas hAdV8 infection, which lacks an approved drug therapy, was inhibited by cidofovir. We document transcriptional programs induced by HSV1 and hAdV8. Finally, conjunctival organoids can be transplanted. Together, human conjunctiva organoid cultures enable the study of conjunctival (patho)-physiology.


Assuntos
Túnica Conjuntiva , Células Caliciformes , Humanos , Camundongos , Animais , Túnica Conjuntiva/metabolismo , Células Caliciformes/metabolismo , Epitélio , Interleucina-13 , Homeostase , Organoides
5.
Cell ; 187(3): 712-732.e38, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194967

RESUMO

Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.


Assuntos
Encéfalo , Organoides , Humanos , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Pluripotentes/metabolismo , Prosencéfalo/citologia , Técnicas de Cultura de Tecidos , Células-Tronco/metabolismo , Morfogênese
6.
J Extracell Vesicles ; 12(11): e12376, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37942918

RESUMO

Extracellular vesicles (EVs) in blood plasma are recognized as potential biomarkers for disease. Although blood plasma is easily obtainable, analysis of EVs at the single particle level is still challenging due to the biological complexity of this body fluid. Besides EVs, plasma contains different types of lipoproteins particles (LPPs), that outnumber EVs by orders of magnitude and which partially overlap in biophysical properties such as size, density and molecular makeup. Consequently, during EV isolation LPPs are often co-isolated. Furthermore, physical EV-LPP complexes have been observed in purified EV preparations. Since co-isolation or association of LPPs can impact EV-based analysis and biomarker profiling, we investigated the presence and formation of EV-LPP complexes in biological samples by using label-free atomic force microscopy, cryo-electron tomography and synchronous Rayleigh and Raman scattering analysis of optically trapped particles and fluorescence-based high sensitivity single particle flow cytometry. Furthermore, we evaluated the impact on flow cytometric analysis in the presence of LPPs using in vitro spike-in experiments of purified tumour cell line-derived EVs in different classes of purified human LPPs. Based on orthogonal single-particle analysis techniques we demonstrate that EV-LPP complexes can form under physiological conditions. Furthermore, we show that in fluorescence-based flow cytometric EV analysis staining of LPPs, as well as EV-LPP associations, can influence quantitative and qualitative EV analysis. Lastly, we demonstrate that the colloidal matrix of the biofluid in which EVs reside impacts their buoyant density, size and/or refractive index (RI), which may have consequences for down-stream EV analysis and EV biomarker profiling.


Assuntos
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/fisiologia , Imagem Individual de Molécula , Biomarcadores , Linhagem Celular Tumoral , Lipoproteínas LDL
7.
Science ; 382(6669): 451-458, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883554

RESUMO

Enteroendocrine cells (EECs) are hormone-producing cells residing in the epithelium of stomach, small intestine (SI), and colon. EECs regulate aspects of metabolic activity, including insulin levels, satiety, gastrointestinal secretion, and motility. The generation of different EEC lineages is not completely understood. In this work, we report a CRISPR knockout screen of the entire repertoire of transcription factors (TFs) in adult human SI organoids to identify dominant TFs controlling EEC differentiation. We discovered ZNF800 as a master repressor for endocrine lineage commitment, which particularly restricts enterochromaffin cell differentiation by directly controlling an endocrine TF network centered on PAX4. Thus, organoid models allow unbiased functional CRISPR screens for genes that program cell fate.


Assuntos
Sistemas CRISPR-Cas , Linhagem da Célula , Células Enteroendócrinas , Regulação da Expressão Gênica , Proteínas Repressoras , Dedos de Zinco , Humanos , Diferenciação Celular/genética , Células Enteroendócrinas/citologia , Células Enteroendócrinas/metabolismo , Organoides , Adulto , Linhagem da Célula/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
8.
PLoS Pathog ; 19(8): e1011559, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37619220

RESUMO

Mycobacterium abscessus (Mabs) drives life-shortening mortality in cystic fibrosis (CF) patients, primarily because of its resistance to chemotherapeutic agents. To date, our knowledge on the host and bacterial determinants driving Mabs pathology in CF patient lung remains rudimentary. Here, we used human airway organoids (AOs) microinjected with smooth (S) or rough (R-)Mabs to evaluate bacteria fitness, host responses to infection, and new treatment efficacy. We show that S Mabs formed biofilm, and R Mabs formed cord serpentines and displayed a higher virulence. While Mabs infection triggers enhanced oxidative stress, pharmacological activation of antioxidant pathways resulted in better control of Mabs growth and reduced virulence. Genetic and pharmacological inhibition of the CFTR is associated with better growth and higher virulence of S and R Mabs. Finally, pharmacological activation of antioxidant pathways inhibited Mabs growth, at least in part through the quinone oxidoreductase NQO1, and improved efficacy in combination with cefoxitin, a first line antibiotic. In conclusion, we have established AOs as a suitable human system to decipher mechanisms of CF-driven respiratory infection by Mabs and propose boosting of the NRF2-NQO1 axis as a potential host-directed strategy to improve Mabs infection control.


Assuntos
Fibrose Cística , Mycobacterium abscessus , Humanos , Fibrose Cística/tratamento farmacológico , Antioxidantes , Oxirredução , Estresse Oxidativo
9.
ACS Nano ; 17(16): 15836-15846, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37531407

RESUMO

Cryogenic electron microscopy can provide high-resolution reconstructions of macromolecules embedded in a thin layer of ice from which atomic models can be built de novo. However, the interaction between the ionizing electron beam and the sample results in beam-induced motion and image distortion, which limit the attainable resolutions. Sample charging is one contributing factor of beam-induced motions and image distortions, which is normally alleviated by including part of the supporting conducting film within the beam-exposed region. However, routine data collection schemes avoid strategies whereby the beam is not in contact with the supporting film, whose rationale is not fully understood. Here we characterize electrostatic charging of vitreous samples, both in imaging and in diffraction mode. We mitigate sample charging by depositing a single layer of conductive graphene on top of regular EM grids. We obtained high-resolution single-particle analysis (SPA) reconstructions at 2 Å when the electron beam only irradiates the middle of the hole on graphene-coated grids, using data collection schemes that previously failed to produce sub 3 Å reconstructions without the graphene layer. We also observe that the SPA data obtained with the graphene-coated grids exhibit a higher b factor and reduced particle movement compared to data obtained without the graphene layer. This mitigation of charging could have broad implications for various EM techniques, including SPA and cryotomography, and for the study of radiation damage and the development of future sample carriers. Furthermore, it may facilitate the exploration of more dose-efficient, scanning transmission EM based SPA techniques.

10.
Int J Rheum Dis ; 26(10): 2085-2088, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37191194

RESUMO

This case summarizes a 69-year-old woman who presented with a history of recurrent fevers, widespread urticarial rash and generalized myalgias for several years with an eventual diagnosis of Schnitzler's syndrome. This is a rare autoinflammatory condition which typically involves a chronic urticarial rash, monoclonal immunoglobulin M (IgM) or IgG gammopathy. Rapid improvement in above symptoms were noted with anakinra, an interleukin-1 receptor antagonist. We report an unusual case of a 69-year-old woman who presented with an isolated IgA monoclonal gammopathy.


Assuntos
Exantema , Síndrome de Schnitzler , Urticária , Feminino , Humanos , Idoso , Imunoglobulina A , Síndrome de Schnitzler/diagnóstico , Síndrome de Schnitzler/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Imunoglobulina M
11.
Dev Cell ; 58(7): 535-549.e5, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36905927

RESUMO

The basement membrane (BM) around tumor lobes forms a barrier to prevent cancer cells from invading the surrounding tissue. Although myoepithelial cells are key producers of the healthy mammary epithelium BM, they are nearly absent in mammary tumors. To study the origin and dynamics of the BM, we developed and imaged a laminin beta1-Dendra2 mouse model. We show that the turnover of laminin beta1 is faster in the BMs that surround the tumor lobes than in the BMs that surround the healthy epithelium. Moreover, we find that epithelial cancer cells and tumor-infiltrating endothelial cells synthesize laminin beta1 and that this production is temporarily and locally heterogeneous, leading to local discontinuity of the BM laminin beta1. Collectively, our data draw a new paradigm for tumor BM turnover in which the disassembly happens at a constant rate, and a local misbalance of compensating production leads to reduction or even complete disappearance of the BM.


Assuntos
Neoplasias da Mama , Laminina , Animais , Feminino , Humanos , Camundongos , Membrana Basal , Neoplasias da Mama/patologia , Células Endoteliais , Células Epiteliais , Modelos Animais de Doenças
12.
Nat Methods ; 20(4): 499-511, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914814

RESUMO

Cryogenic electron microscopy and data processing enable the determination of structures of isolated macromolecules to near-atomic resolution. However, these data do not provide structural information in the cellular environment where macromolecules perform their native functions, and vital molecular interactions can be lost during the isolation process. Cryogenic focused ion beam (FIB) fabrication generates thin lamellae of cellular samples and tissues, enabling structural studies on the near-native cellular interior and its surroundings by cryogenic electron tomography (cryo-ET). Cellular cryo-ET benefits from the technological developments in electron microscopes, detectors and data processing, and more in situ structures are being obtained and at increasingly higher resolution. In this Review, we discuss recent studies employing cryo-ET on FIB-generated lamellae and the technological developments in ultrarapid sample freezing, FIB fabrication of lamellae, tomography, data processing and correlative light and electron microscopy that have enabled these studies. Finally, we explore the future of cryo-ET in terms of both methods development and biological application.


Assuntos
Tomografia com Microscopia Eletrônica , Tomografia com Microscopia Eletrônica/métodos , Substâncias Macromoleculares
13.
Nat Biotechnol ; 41(11): 1567-1581, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36823355

RESUMO

The lack of registered drugs for nonalcoholic fatty liver disease (NAFLD) is partly due to the paucity of human-relevant models for target discovery and compound screening. Here we use human fetal hepatocyte organoids to model the first stage of NAFLD, steatosis, representing three different triggers: free fatty acid loading, interindividual genetic variability (PNPLA3 I148M) and monogenic lipid disorders (APOB and MTTP mutations). Screening of drug candidates revealed compounds effective at resolving steatosis. Mechanistic evaluation of effective drugs uncovered repression of de novo lipogenesis as the convergent molecular pathway. We present FatTracer, a CRISPR screening platform to identify steatosis modulators and putative targets using APOB-/- and MTTP-/- organoids. From a screen targeting 35 genes implicated in lipid metabolism and/or NAFLD risk, FADS2 (fatty acid desaturase 2) emerged as an important determinant of hepatic steatosis. Enhancement of FADS2 expression increases polyunsaturated fatty acid abundancy which, in turn, reduces de novo lipogenesis. These organoid models facilitate study of steatosis etiology and drug targets.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Apolipoproteínas B/metabolismo , Fígado/metabolismo
14.
J Biol Chem ; 299(1): 102761, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463964

RESUMO

Pathogenic species from the Mycobacterium genus are responsible for a number of adverse health conditions in humans and animals that threaten health security and the economy worldwide. Mycobacteria have up to five specialized secretion systems (ESX-1 to ESX-5) that transport virulence factors across their complex cell envelope to facilitate manipulation of their environment. In pathogenic species, these virulence factors influence the immune system's response and are responsible for membrane disruption and contributing to cell death. While structural details of these secretion systems have been recently described, gaps still remain in the structural understanding of the secretion mechanisms of most substrates. Here, we describe the crystal structure of Mycobacterium tuberculosis ESX-1 secretion-associated substrate EspB bound to its chaperone EspK. We found that EspB interacts with the C-terminal domain of EspK through its helical tip. Furthermore, cryogenic electron microscopy, size exclusion chromatography analysis, and small-angle X-ray scattering experiments show that EspK keeps EspB in its secretion-competent monomeric form and prevents its oligomerization. The structure presented in this study suggests an additional secretion mechanism in ESX-1, analogous to the chaperoning of proline-glutamate (PE)-proline-proline-glutamate (PPE) proteins by EspG, where EspK facilitates the secretion of EspB in Mycobacterium species.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Bactérias , Mycobacterium tuberculosis , Fatores de Virulência , Humanos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glutamatos/metabolismo , Mycobacterium tuberculosis/metabolismo , Prolina/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Morte Celular , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Cristalização , Microscopia Crioeletrônica
16.
Cell Stem Cell ; 29(9): 1333-1345.e6, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36002022

RESUMO

Opposing roles have been proposed for IL-22 in intestinal pathophysiology. We have optimized human small intestinal organoid (hSIO) culturing, constitutively generating all differentiated cell types while maintaining an active stem cell compartment. IL-22 does not promote the expansion of stem cells but rather slows the growth of hSIOs. In hSIOs, IL-22 is required for formation of Paneth cells, the prime producers of intestinal antimicrobial peptides (AMPs). Introduction of inflammatory bowel disease (IBD)-associated loss-of-function mutations in the IL-22 co-receptor gene IL10RB resulted in abolishment of Paneth cells in hSIOs. Moreover, IL-22 induced expression of host defense genes (such as REG1A, REG1B, and DMBT1) in enterocytes, goblet cells, Paneth cells, Tuft cells, and even stem cells. Thus, IL-22 does not directly control the regenerative capacity of crypt stem cells but rather boosts Paneth cell numbers, as well as the expression of AMPs in all cell types.


Assuntos
Organoides , Celulas de Paneth , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Organoides/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Interleucina 22
17.
Angiogenesis ; 25(4): 455-470, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35704148

RESUMO

With recent progress in modeling liver organogenesis and regeneration, the lack of vasculature is becoming the bottleneck in progressing our ability to model human hepatic tissues in vitro. Here, we introduce a platform for routine grafting of liver and other tissues on an in vitro grown microvascular bed. The platform consists of 64 microfluidic chips patterned underneath a 384-well microtiter plate. Each chip allows the formation of a microvascular bed between two main lateral vessels by inducing angiogenesis. Chips consist of an open-top microfluidic chamber, which enables addition of a target tissue by manual or robotic pipetting. Upon grafting a liver microtissue, the microvascular bed undergoes anastomosis, resulting in a stable, perfusable vascular network. Interactions with vasculature were found in spheroids and organoids upon 7 days of co-culture with space of Disse-like architecture in between hepatocytes and endothelium. Veno-occlusive disease was induced by azathioprine exposure, leading to impeded perfusion of the vascularized spheroid. The platform holds the potential to replace animals with an in vitro alternative for routine grafting of spheroids, organoids, or (patient-derived) explants.


Assuntos
Microfluídica , Organoides , Animais , Azatioprina , Técnicas de Cocultura , Humanos , Fígado , Microfluídica/métodos
18.
Vaccines (Basel) ; 10(2)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35214693

RESUMO

SARS-CoV-2 vaccine production has taken us by storm. We aim to fill in the history of concepts and the work of pioneers and provide a framework of strategies employing structural vaccinology. Cryo-electron microscopy became crucial in providing three-dimensional (3D) structures and creating candidates eliciting T and B cell-mediated immunity. It also determined structural changes in the emerging mutants in order to design new constructs that can be easily, quickly and safely added to the vaccines. The full-length spike (S) protein, the S1 subunit and its receptor binding domain (RBD) of the virus are the best candidates. The vaccine development to cease this COVID-19 pandemic sets a milestone for the pan-coronavirus vaccine's designing and manufacturing. By employing structural vaccinology, we propose that the mRNA and the protein sequences of the currently approved vaccines should be modified rapidly to keep up with the more infectious new variants.

19.
Mol Microbiol ; 117(3): 682-692, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34605588

RESUMO

Respiratory infections remain a major global health concern. Tuberculosis is one of the top 10 causes of death worldwide, while infections with Non-Tuberculous Mycobacteria are rising globally. Recent advances in human tissue modeling offer a unique opportunity to grow different human "organs" in vitro, including the human airway, that faithfully recapitulates lung architecture and function. Here, we have explored the potential of human airway organoids (AOs) as a novel system in which to assess the very early steps of mycobacterial infection. We reveal that Mycobacterium tuberculosis (Mtb) and Mycobacterium abscessus (Mabs) mainly reside as extracellular bacteria and infect epithelial cells with very low efficiency. While the AO microenvironment was able to control, but not eliminate Mtb, Mabs thrives. We demonstrate that AOs responded to infection by modulating cytokine, antimicrobial peptide, and mucin gene expression. Given the importance of myeloid cells in mycobacterial infection, we co-cultured infected AOs with human monocyte-derived macrophages and found that these cells interact with the organoid epithelium. We conclude that adult stem cell (ASC)-derived AOs can be used to decipher very early events of mycobacteria infection in human settings thus offering new avenues for fundamental and therapeutic research.


Assuntos
Mycobacterium abscessus , Mycobacterium tuberculosis , Tuberculose , Humanos , Macrófagos/microbiologia , Micobactérias não Tuberculosas , Organoides , Tuberculose/microbiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-34909667

RESUMO

Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. Despite decades of research driving advancements in drug development and discovery against TB, it still leads among the causes of deaths due to infectious diseases. We are yet to develop an effective treatment course or a vaccine that could help us eradicate TB. Some key issues being prolonged treatment courses, inadequate drug intake, and the high dropout rate of patients during the treatment course. Hence, we require drugs that could accelerate the elimination of bacteria, shortening the treatment duration. It is high time we evaluate the probable lacunas in research holding us back in coming up with a treatment regime and/or a vaccine that would help control TB spread. Years of dedicated and focused research provide us with a lead molecule that goes through several tests, trials, and modifications to transform into a 'drug'. The transformation from lead molecule to 'drug' is governed by several factors determining its success or failure. In the present review, we have discussed drugs that are part of the currently approved treatment regimen, their limitations, vaccine candidates under trials, and current issues in research that need to be addressed. While we are waiting for the path-breaking treatment for TB, these factors should be considered during the ongoing quest for novel yet effective anti-tubercular. If these issues are addressed, we could hope to develop a more effective treatment that would cure multi/extremely drug-resistant TB and help us meet the WHO's targets for controlling the global TB pandemic within the prescribed timeline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA