Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Ecol Evol ; 13(11): e10729, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034336

RESUMO

When habitat use by field-dwelling animals coincides in space and time with agricultural practices such as spring mowing of meadows, human-wildlife conflicts can have deadly consequences for wildlife. Roe deer (Capreolus capreolus L.) fawns are particularly vulnerable because they hide in meadows during the rearing phase. Thus, a better understanding of the habitat drivers of bed-site selection is critical to mitigating fawn mortality during mowing. Here, we tease apart the among-field (presumably driven by maternal behaviour) and within-field (driven by fawn behaviour) components of bed-site selection of roe deer during the spring mowing season. We collected over 600 fawn bed sites across an environmentally diverse study region. At the among-field scale, we implemented a used versus available design and employed a two-part statistical model (GAMLSS) to identify habitat characteristics that were linked to either fawn presence (vs. absence) or abundance on a given field. At the within-field scale, we compared habitat characteristics at fawn bed-sites with paired random sites using a conditional logistic regression model. At the among-field scale, fawns were more likely to be present, and were more abundant, in fields within more diverse, rural landscapes, with nearby woodland. Surprisingly, fawns were more often present in fields that were near roads and had lower vegetation productivity. At the within-field scale, however, fawns preferred bed-sites which were further from both roads and woodland, but that provided the best visual cover to minimise predation risk. Our findings revealed substantial and novel scale-dependent differences in the drivers of habitat selection of mothers and fawns, which, together, determine the precise locations of bed-sites between and within meadows. These results may aid wildlife managers in identifying areas where there is a high probability of encountering a roe deer fawn so as to initiate targeted searches prior to mowing and, ultimately, mitigate fawn mowing mortality.

2.
Commun Biol ; 6(1): 979, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749272

RESUMO

Sex-specific differences in habitat selection and space use are common in ungulates. Yet, it is largely unknown how this behavioral dimorphism, ultimately leading to sexual segregation, translates to population-level patterns and density gradients across landscapes. Alpine chamois (Rupicapra rupicapra r.) predominantly occupy habitat above tree line, yet especially males may also take advantage of forested habitats. To estimate male and female chamois density and determinants thereof, we applied Bayesian spatial capture-recapture (SCR) models in two contrasting study areas in the Alps, Germany, during autumn. We fitted SCR models to non-invasive individual encounter data derived from genotyped feces. Sex-specific densities were modeled as a function of terrain ruggedness, forest canopy cover, proportion of barren ground, and site severity. We detected pronounced differences in male and female density patterns, driven primarily by terrain ruggedness, rather than by sex-specific effects of canopy cover. The positive effect of ruggedness on density was weaker for males which translated into a higher proportion of males occupying less variable terrain, frequently located in forests, compared to females. By estimating sex-specific variation in both detection probabilities and density, we were able to quantify and map how individual behavioral differences scale up and shape spatial patterns in population density.


Assuntos
Rupicapra , Animais , Masculino , Feminino , Teorema de Bayes , Genótipo , Caracteres Sexuais , Alemanha
3.
Glob Chang Biol ; 29(20): 5788-5801, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37306048

RESUMO

Human activity and associated landscape modifications alter the movements of animals with consequences for populations and ecosystems worldwide. Species performing long-distance movements are thought to be particularly sensitive to human impact. Despite the increasing anthropogenic pressure, it remains challenging to understand and predict animals' responses to human activity. Here we address this knowledge gap using 1206 Global Positioning System movement trajectories of 815 individuals from 14 red deer (Cervus elaphus) and 14 elk (Cervus canadensis) populations spanning wide environmental gradients, namely the latitudinal range from the Alps to Scandinavia in Europe, and the Greater Yellowstone Ecosystem in North America. We measured individual-level movements relative to the environmental context, or movement expression, using the standardized metric Intensity of Use, reflecting both the directionality and extent of movements. We expected movement expression to be affected by resource (Normalized Difference Vegetation Index, NDVI) predictability and topography, but those factors to be superseded by human impact. Red deer and elk movement expression varied along a continuum, from highly segmented trajectories over relatively small areas (high intensity of use), to directed transitions through restricted corridors (low intensity of use). Human activity (Human Footprint Index, HFI) was the strongest driver of movement expression, with a steep increase in Intensity of Use as HFI increased, but only until a threshold was reached. After exceeding this level of impact, the Intensity of Use remained unchanged. These results indicate the overall sensitivity of Cervus movement expression to human activity and suggest a limitation of plastic responses under high human pressure, despite the species also occurring in human-dominated landscapes. Our work represents the first comparison of metric-based movement expression across widely distributed populations of a deer genus, contributing to the understanding and prediction of animals' responses to human activity.


Assuntos
Cervos , Ecossistema , Humanos , Animais , Cervos/fisiologia , Atividades Humanas , América do Norte , Sistemas de Informação Geográfica
4.
Sci Rep ; 13(1): 4561, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941335

RESUMO

Forests in Europe are exposed to increasingly frequent and severe disturbances. The resulting changes in the structure and composition of forests can have profound consequences for the wildlife inhabiting them. Moreover, wildlife populations in Europe are often subjected to differential management regimes as they regularly extend across multiple national and administrative borders. The red deer Cervus elaphus population in the Bohemian Forest Ecosystem, straddling the Czech-German border, has experienced forest disturbances, primarily caused by windfalls and bark beetle Ips typographus outbreaks during the past decades. To adapt local management strategies to the changing environmental conditions and to coordinate them across the international border, reliable estimates of red deer density and abundance are highly sought-after by policymakers, wildlife managers, and stakeholders. Covering a 1081-km2 study area, we conducted a transnational non-invasive DNA sampling study in 2018 that yielded 1578 genotyped DNA samples from 1120 individual red deer. Using spatial capture-recapture models, we estimated total and jurisdiction-specific abundance of red deer throughout the ecosystem and quantified the role of forest disturbance and differential management strategies in shaping spatial heterogeneity in red deer density. We hypothesised that (a) forest disturbances provide favourable habitat conditions (e.g., forage and cover), and (b) contrasting red deer management regimes in different jurisdictions create a differential risk landscape, ultimately shaping density distributions. Overall, we estimated that 2851 red deer (95% Credible Interval = 2609-3119) resided in the study area during the sampling period, with a relatively even overall sex ratio (1406 females, 95% CI = 1229-1612 and 1445 males, 95% CI = 1288-1626). The average red deer density was higher in Czechia (3.5 km-2, 95% CI = 1.2-12.3) compared to Germany (2 km-2, 95% CI = 0.2-11). The effect of forest disturbances on red deer density was context-dependent. Forest disturbances had a positive effect on red deer density at higher elevations and a negative effect at lower elevations, which could be explained by partial migration and its drivers in this population. Density of red deer was generally higher in management units where hunting is prohibited. In addition, we found that sex ratios differed between administrative units and were more balanced in the non-intervention zones. Our results show that the effect of forest disturbances on wild ungulates is modulated by additional factors, such as elevation and ungulate management practices. Overall density patterns and sex ratios suggested strong gradients in density between administrative units. With climate change increasing the severity and frequency of forest disturbances, population-level monitoring and management are becoming increasingly important, especially for wide-ranging species as both wildlife and global change transcend administrative boundaries.


Assuntos
Cervos , Ecossistema , Masculino , Feminino , Animais , Florestas , Europa (Continente) , Animais Selvagens
5.
Animals (Basel) ; 12(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35158549

RESUMO

European roe deer (Capreolus capreolus L.) are important given their economic, recreational and ecological value. However, uncontrolled roe deer numbers can result in negative impacts on forest regeneration and agricultural crops, disease transmission and occurrences of deer-vehicle collisions. Information on the abundance and distribution is needed for effective management. We combined distance sampling (DS) of roe deer dung pellet groups with multiple variables to develop a density surface model (DSM) in the federal state of Bavaria in south-eastern Germany. We used the estimates of pellet group density as a proxy for roe deer relative abundance. We extrapolated our best DSM, conducted a quantitative evaluation and contrasted relative abundance along climate and land-use gradients. Relative abundance of roe deer was influenced by a combination of habitat type, climate and wildlife management variables, which differed between seasons and which reflected changes in food and shelter availability. At the landscape scale, the highest abundance was observed in agriculture-dominated areas and the lowest in urban areas. Higher abundance was also observed in areas with intermediate temperatures compared to the warmest areas. Our results provide information on possible future changes in the distribution of relative abundance due to changes in climate and land-use.

6.
Glob Ecol Conserv ; 32: e01895, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34729384

RESUMO

Recent events related to the measures taken to control the spread of the Coronavirus (SARS-CoV-2) reduced human mobility (i.e. anthropause), potentially opening connectivity opportunities for wildlife populations. In the Italian Alps, brown bears have recovered after reintroduction within a complex anthropogenic matrix, but failed to establish a metapopulation due to reduced connectivity and human disturbance (i.e. infrastructure, land use, and human mobility). Previous work from Peters et al. (2015, Biol. Cons. 186, 123-133) predicted the main corridors and suitable hot spots for road network crossing for this population across all major roads and settlement zones, to link most suitable habitats. Bears used the identified hot spots for road network crossing over the years, but major barriers such as main motor roads were not overcome, possibly due to functional anthropogenic disturbance, specifically human mobility. By analyzing 404 bear occurrences reported to local authorities (as bear-related complaints) collected between 2016 and 2020 (March 9th - May 18th), hence including the COVID-19 related lockdown, we tested the effect of human presence on brown bears' use of space and hot spots for road network crossing. Animals occupied human-dominated spaces and approached hot spots for crossing at a higher rate during the lockdown than in previous years, suggesting that connectivity temporarily increased with reduced human mobility for this population. As a result of their increased use of hot spots, bears expanded their use of suitable areas beyond the population core area. Movement of animals across structural barriers such as roads and human settlements may therefore occur in absence of active disturbance. We also showed the value of predictive models to identify hot spots for animal barrier crossing, the knowledge of which is critical when implementing management solutions to enhance connectivity. Understanding the factors that influence immigration and emigration across metapopulations of large mammals, particularly carnivores that may compete indirectly with humans for space or directly as super-predators, is critical to ensure the long-term viability of conservation efforts for their persistence. We argue that dynamic factors such as human mobility may play a larger role than previously recognized.

7.
Ecol Evol ; 11(15): 10178-10191, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34367568

RESUMO

Due to human-induced climate and landscape changes, distribution and abundance of many ungulate species have increased worldwide. Especially in areas where natural predators are absent, hunting is the essential management tool for regulating ungulate populations. Therefore, understanding the factors associated with harvest rates is the first step toward an adaptive management approach. Weather influences hunter and ungulate behavior and thus presumably harvest, but how and which meteorological parameters are linked to harvest numbers have rarely been evaluated. We used nearly 65,000 "sit and wait" and driven hunt harvests of roe deer (Capreolus capreolus) in Bavaria, Germany, and weather data from 2008 to 2017 to test for factors affecting roe deer harvests (i.e., temperature, rain hours, wind speed, sunshine duration, snow depth, workdays vs. weekends, month) using zero-inflated negative binomial mixed-effect models. Our results reveal that, besides workdays, high temperatures and prolonged rain resulted in fewer harvested animals, whereas sunshine duration in summer and snow height in snow-rich areas partially favored harvests during sitting hunts in summer and winter, respectively. The influence of wind speed varied over the course of the year. In summer and autumn, wind speed commonly had a negative effect, positively affecting harvests in winter in some regions. Daily harvest numbers decreased during the summer and autumn hunting periods (May till mid-October), while they increased during the winter period (mid-October till mid-January). Interestingly, harvest success during driven hunts, which are planned well in advance and therefore take place largely independent of weather conditions, was similarly affected by the weather. This result suggests that the inferred weather influence is not only due to the hunters' decisions but also due to deer behavior. Since many ungulate populations may further benefit from climate change, building an understanding of the relationship between hunting success and weather will aid adaptive ungulate management.

9.
Ecol Evol ; 11(10): 5468-5483, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34026021

RESUMO

The border region between Austria, the Czech Republic, and Germany harbors the most south-western occurrence of moose in continental Europe. The population originated in Poland, where moose survived, immigrated from former Soviet Union or were reintroduced after the Second World War expanded west- and southwards. In recent years, the distribution of the nonetheless small Central European population seems to have declined, necessitating an evaluation of its current status. In this study, existing datasets of moose observations from 1958 to 2019 collected in the three countries were combined to create a database totaling 771 records (observations and deaths). The database was then used to analyze the following: (a) changes in moose distribution, (b) the most important mortality factors, and (c) the availability of suitable habitat as determined using a maximum entropy approach. The results showed a progressive increase in the number of moose observations after 1958, with peaks in the 1990s and around 2010, followed by a relatively steep drop after 2013. Mortality within the moose population was mostly due to human interactions, including 13 deadly wildlife-vehicle collisions, particularly on minor roads, and four animals that were either legally culled or poached. Our habitat model suggested that higher altitudes (ca. 700-1,000 m a.s.l.), especially those offering wetlands, broad-leaved forests and natural grasslands, are the preferred habitats of moose whereas steep slopes and areas of human activity are avoided. The habitat model also revealed the availability of large core areas of suitable habitat beyond the current distribution, suggesting that habitat was not the limiting factor explaining the moose distribution in the study area. Our findings call for immediate transboundary conservation measures to sustain the moose population, such as those aimed at preventing wildlife-vehicle collisions and illegal killings. Infrastructure planning and development activities must take into account the habitat requirements of moose.

10.
Sci Rep ; 11(1): 7600, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828110

RESUMO

Ungulates in alpine ecosystems are constrained by winter harshness through resource limitation and direct mortality from weather extremes. However, little empirical evidence has definitively established how current climate change and other anthropogenic modifications of resource availability affect ungulate winter distribution, especially at their range limits. Here, we used a combination of historical (1997-2002) and contemporary (2012-2015) Eurasian roe deer (Capreolus capreolus) relocation datasets that span changes in snowpack characteristics and two levels of supplemental feeding to compare and forecast probability of space use at the species' altitudinal range limit. Scarcer snow cover in the contemporary period interacted with the augmented feeding site distribution to increase the elevation of winter range limits, and we predict this trend will continue under climate change. Moreover, roe deer have shifted from historically using feeding sites primarily under deep snow conditions to contemporarily using them under a wider range of snow conditions as their availability has increased. Combined with scarcer snow cover during December, January, and April, this trend has reduced inter-annual variability in space use patterns in these months. These spatial responses to climate- and artificial resource-provisioning shifts evidence the importance of these changing factors in shaping large herbivore spatial distribution and, consequently, ecosystem dynamics.


Assuntos
Cervos/psicologia , Comportamento Alimentar/fisiologia , Migração Animal/fisiologia , Animais , Mudança Climática , Cervos/fisiologia , Demografia/tendências , Ecossistema , Comportamento Alimentar/psicologia , Alimentos , Herbivoria/fisiologia , Estações do Ano , Neve , Tundra , Tempo (Meteorologia)
11.
Curr Biol ; 30(17): 3444-3449.e4, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32619482

RESUMO

Animals exhibit a diversity of movement tactics [1]. Tracking resources that change across space and time is predicted to be a fundamental driver of animal movement [2]. For example, some migratory ungulates (i.e., hooved mammals) closely track the progression of highly nutritious plant green-up, a phenomenon called "green-wave surfing" [3-5]. Yet general principles describing how the dynamic nature of resources determine movement tactics are lacking [6]. We tested an emerging theory that predicts surfing and the existence of migratory behavior will be favored in environments where green-up is fleeting and moves sequentially across large landscapes (i.e., wave-like green-up) [7]. Landscapes exhibiting wave-like patterns of green-up facilitated surfing and explained the existence of migratory behavior across 61 populations of four ungulate species on two continents (n = 1,696 individuals). At the species level, foraging benefits were equivalent between tactics, suggesting that each movement tactic is fine-tuned to local patterns of plant phenology. For decades, ecologists have sought to understand how animals move to select habitat, commonly defining habitat as a set of static patches [8, 9]. Our findings indicate that animal movement tactics emerge as a function of the flux of resources across space and time, underscoring the need to redefine habitat to include its dynamic attributes. As global habitats continue to be modified by anthropogenic disturbance and climate change [10], our synthesis provides a generalizable framework to understand how animal movement will be influenced by altered patterns of resource phenology.


Assuntos
Migração Animal/fisiologia , Mudança Climática , Cervos/fisiologia , Ecossistema , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Animais , Sistemas de Informação Geográfica , Herbivoria
12.
Oecologia ; 187(1): 47-60, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29610976

RESUMO

Much research on large herbivore movement has focused on the annual scale to distinguish between resident and migratory tactics, commonly assuming that individuals are sedentary at the within-season scale. However, apparently sedentary animals may occupy a number of sub-seasonal functional home ranges (sfHR), particularly when the environment is spatially heterogeneous and/or temporally unpredictable. The roe deer (Capreolus capreolus) experiences sharply contrasting environmental conditions due to its widespread distribution, but appears markedly sedentary over much of its range. Using GPS monitoring from 15 populations across Europe, we evaluated the propensity of this large herbivore to be truly sedentary at the seasonal scale in relation to variation in environmental conditions. We studied movement using net square displacement to identify the possible use of sfHR. We expected that roe deer should be less sedentary within seasons in heterogeneous and unpredictable environments, while migratory individuals should be seasonally more sedentary than residents. Our analyses revealed that, across the 15 populations, all individuals adopted a multi-range tactic, occupying between two and nine sfHR during a given season. In addition, we showed that (i) the number of sfHR was only marginally influenced by variation in resource distribution, but decreased with increasing sfHR size; and (ii) the distance between sfHR increased with increasing heterogeneity and predictability in resource distribution, as well as with increasing sfHR size. We suggest that the multi-range tactic is likely widespread among large herbivores, allowing animals to track spatio-temporal variation in resource distribution and, thereby, to cope with changes in their local environment.


Assuntos
Cervos , Herbivoria , Animais , Europa (Continente) , Comportamento de Retorno ao Território Vital , Estações do Ano
13.
J Anim Ecol ; 86(4): 943-959, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28369891

RESUMO

Many animals undertake movements that are longer scaled and more directed than their typical home ranging behaviour. These movements include seasonal migrations (e.g. between breeding and feeding grounds), natal dispersal, nomadic range shifts and responses to local environmental disruptions. While various heuristic tools exist for identifying range shifts and migrations, none explicitly model the movement of the animals within a statistical framework that facilitates quantitative comparisons. We present the mechanistic range shift analysis (MRSA), a method to estimate a suite of range shift parameters: times of initiation, duration of transitions, centroids and areas of respective ranges. The method can take the autocorrelation and irregular sampling that is characteristic of much movement data into account. The mechanistic parameters suggest an intuitive measure, the range shift index, for the extent of a range shift. The likelihood based estimation further allows for statistical tests of several relevant hypotheses, including a range shift test, a stopover test and a site fidelity test. The analysis tools are provided in an R package (marcher). We applied the MRSA to a population of GPS tracked roe deer (Capreolus capreolus) in the Italian Alps between 2005 and 2008. With respect to seasonal migration, this population is extremely variable and difficult to classify. Using the MRSA, we were able to quantify the behaviours across the population and among individuals across years, identifying extents, durations and locations of seasonal range shifts, including cases that would have been ambiguous to detect using existing tools. The strongest patterns were differences across years: many animals simply did not perform a seasonal migration to wintering grounds during the mild winter of 2006-2007, even though some of these same animals did move extensively in other, harsher winters. For seasonal migrants, however, site fidelity across years was extremely high, even after skipping an entire seasonal migration. These results suggest that for roe deer behavioural plasticity and tactical responses to immediate environmental cues are reflected in the decision of whether rather than where to migrate. The MRSA also revealed a trade-off between the probability of migrating and the size of a home range.


Assuntos
Migração Animal , Cervos , Comportamento de Retorno ao Território Vital , Animais , Meio Ambiente , Funções Verossimilhança , Modelos Teóricos , Estações do Ano
14.
Ecol Appl ; 26(7): 2156-2174, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755722

RESUMO

Understanding how habitat and nutritional condition affect ungulate populations is necessary for informing management, particularly in areas experiencing carnivore recovery and declining ungulate population trends. Variations in forage species availability, plant phenological stage, and the abundance of forage make it challenging to understand landscape-level effects of nutrition on ungulates. We developed an integrated spatial modeling approach to estimate landscape-level elk (Cervus elaphus) nutritional resources in two adjacent study areas that differed in coarse measures of habitat quality and related the consequences of differences in nutritional resources to elk body condition and pregnancy rates. We found no support for differences in dry matter digestibility between plant samples or in phenological stage based on ground sampling plots in the two study areas. Our index of nutritional resources, measured as digestible forage biomass, varied among land cover types and between study areas. We found that altered plant composition following fires was the biggest driver of differences in nutritional resources, suggesting that maintaining a mosaic of fire history and distribution will likely benefit ungulate populations. Study area, lactation status, and year affected fall body fat of adult female elk. Elk in the study area exposed to lower summer range nutritional resources had lower nutritional condition entering winter. These differences in nutritional condition resulted in differences in pregnancy rate, with average pregnancy rates of 89% for elk exposed to higher nutritional resources and 72% for elk exposed to lower nutritional resources. Summer range nutritional resources have the potential to limit elk pregnancy rate and calf production, and these nutritional limitations may predispose elk to be more sensitive to the effects of harvest or predation. Wildlife managers should identify ungulate populations that are nutritionally limited and recognize that these populations may be more impacted by recovering carnivores or harvest than populations inhabiting more productive summer habitats.


Assuntos
Cervos/fisiologia , Digestão/fisiologia , Ecossistema , Comportamento Alimentar/fisiologia , Plantas/classificação , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biomassa , Dieta , Monitoramento Ambiental , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA