Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 131(3)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529166

RESUMO

The coat protein I (COPI) complex mediates retrograde trafficking from the Golgi to the endoplasmic reticulum (ER). Five siblings with persistent bacterial and viral infections and defective humoral and cellular immunity had a homozygous p.K652E mutation in the γ1 subunit of COPI (γ1-COP). The mutation disrupts COPI binding to the KDEL receptor and impairs the retrieval of KDEL-bearing chaperones from the Golgi to the ER. Homozygous Copg1K652E mice had increased ER stress in activated T and B cells, poor antibody responses, and normal numbers of T cells that proliferated normally, but underwent increased apoptosis upon activation. Exposure of the mutants to pet store mice caused weight loss, lymphopenia, and defective T cell proliferation that recapitulated the findings in the patients. The ER stress-relieving agent tauroursodeoxycholic acid corrected the immune defects of the mutants and reversed the phenotype they acquired following exposure to pet store mice. This study establishes the role of γ1-COP in the ER retrieval of KDEL-bearing chaperones and thereby the importance of ER homeostasis in adaptive immunity.


Assuntos
Apoptose/imunologia , Linfócitos B/imunologia , Estresse do Retículo Endoplasmático/imunologia , Ativação Linfocitária , Mutação de Sentido Incorreto , Imunodeficiência Combinada Severa/imunologia , Linfócitos T/imunologia , Substituição de Aminoácidos , Animais , Apoptose/genética , Proteína Coatomer/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Estresse do Retículo Endoplasmático/genética , Complexo de Golgi/genética , Complexo de Golgi/imunologia , Humanos , Camundongos , Camundongos Mutantes , Receptores de Peptídeos/genética , Receptores de Peptídeos/imunologia , Imunodeficiência Combinada Severa/genética
2.
mSphere ; 5(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915219

RESUMO

Early epidemiological studies implicated manganese (Mn) as a possible caries-promoting agent, while laboratory studies have indicated that manganese stimulates the expression of virulence-related factors in the dental pathogen Streptococcus mutans To better understand the importance of manganese homeostasis to S. mutans pathophysiology, we first used RNA sequencing to obtain the global transcriptional profile of S. mutans UA159 grown under Mn-restricted conditions. Among the most highly expressed genes were those of the entire sloABC operon, encoding a dual iron/manganese transporter, and an uncharacterized gene, here mntH, that codes for a protein bearing strong similarity to Nramp-type transporters. While inactivation of sloC, which encodes the lipoprotein receptor of the SloABC system, or of mntH alone had no major consequence for the overall fitness of S. mutans, simultaneous inactivation of sloC and mntH (ΔsloC ΔmntH) impaired growth and survival under Mn-restricted conditions, including in human saliva or in the presence of calprotectin. Further, disruption of Mn transport resulted in diminished stress tolerance and reduced biofilm formation in the presence of sucrose. These phenotypes were markedly improved when cells were provided with excess Mn. Metal quantifications revealed that the single mutant strains contained intracellular levels of Mn similar to those seen with the parent strain, whereas Mn was nearly undetectable in the ΔsloC ΔmntH strain. Collectively, these results reveal that SloABC and MntH work independently and cooperatively to promote cell growth under Mn-restricted conditions and that maintenance of Mn homeostasis is essential for the expression of major virulence attributes in S. mutansIMPORTANCE As transition biometals such as manganese (Mn) are essential for all forms of life, the ability to scavenge biometals in the metal-restricted host environment is an important trait of successful cariogenic pathobionts. Here, we showed that the caries pathogen Streptococcus mutans utilizes two Mn transport systems, namely, SloABC and MntH, to acquire Mn from the environment and that the ability to maintain the cellular levels of Mn is important for the manifestation of characteristics that associate S. mutans with dental caries. Our results indicate that the development of strategies to deprive S. mutans of Mn hold promise in the combat against this important bacterial pathogen.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Aptidão Genética , Manganês/metabolismo , Óperon , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Biofilmes/crescimento & desenvolvimento , Transporte Biológico , DNA Bacteriano/genética , Cárie Dentária/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA