Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(8): 5132-5140, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35358387

RESUMO

Phosphorus (P) is present in activated sludge from wastewater treatment plants in the form of metal salt precipitates, extracellular polymeric substances, or bound into the biomass, for example, as intracellular polyphosphate (poly-P). Several methods for a reliable quantification of the different P-fractions have recently been developed, and this study combines them to obtain a comprehensive P mass-balance of activated sludge from four enhanced biological phosphate removal (EBPR) plants. Chemical characterization by ICP-OES and sequential P fractionation showed that chemically bound P constituted 38-69% of total P, most likely in the form of Fe, Mg, or Al minerals. Raman microspectroscopy, solution state 31P NMR, and 31P MAS NMR spectroscopy applied before and after anaerobic P-release experiments, were used to quantify poly-P, which constituted 22-54% of total P and was found in approximately 25% of all bacterial cells. Raman microspectroscopy in combination with fluorescence in situ hybridization was used to quantify poly-P in known polyphosphate-accumulating organisms (PAO) (Tetrasphaera, Candidatus Accumulibacter, and Dechloromonas) and other microorganisms known to possess high level of poly-P, such as the filamentous Ca. Microthrix. Interestingly, only 1-13% of total P was stored by unidentified PAO, highlighting that most PAOs in the full-scale EBPR plants investigated are known.


Assuntos
Fósforo , Esgotos , Reatores Biológicos/microbiologia , Hibridização in Situ Fluorescente , Polifosfatos , Esgotos/microbiologia
2.
Front Microbiol ; 12: 690251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248915

RESUMO

Candidatus Microthrix is one of the most common bulking filamentous microorganisms found in activated sludge wastewater treatment plants (WWTPs) across the globe. One species, Ca. M. parvicella, is frequently observed, but global genus diversity, as well as important aspects of its ecology and physiology, are still unknown. Here, we use the MiDAS ecosystem-specific 16S rRNA gene database in combination with amplicon sequencing of Danish and global WWTPs to investigate Ca. Microthrix spp. diversity, distribution, and factors affecting their global presence. Only two species were abundant across the world confirming low diversity of the genus: the dominant Ca. M. parvicella and an unknown species typically present along with Ca. M. parvicella, although usually in lower abundances. Both species were mostly found in Europe at low-to-moderate temperatures and their growth was favored in municipal WWTPs with advanced process designs. As no isolate is available for the novel species, we propose the name "Candidatus Microthrix subdominans." Ten high-quality metagenome-assembled genomes recovered from Danish WWTPs, including 6 representing the novel Ca. M. subdominans, demonstrated high genetic similarity between the two species with a likely preference for lipids, a putative capability to reduce nitrate and nitrite, and the potential to store lipids and poly-P. Ca. M. subdominans had a potentially more versatile metabolism including additional sugar transporters, higher oxygen tolerance, and the potential to use carbon monoxide as energy source. Newly designed fluorescence in situ hybridization probes revealed similar filamentous morphology for both species. Raman microspectroscopy was used to quantify the in situ levels of intracellular poly-P. Despite the observed similarities in their physiology (both by genomes and in situ), the two species showed different seasonal dynamics in Danish WWTPs through a 13-years survey, possibly indicating occupation of slightly different niches. The genomic information provides the basis for future research into in situ gene expression and regulation, while the new FISH probes provide a useful tool for further characterization in situ. This study is an important step toward understanding the ecology of Ca. Microthrix in WWTPs, which may eventually lead to optimization of control strategies for its growth in this ecosystem.

3.
ISME J ; 15(12): 3605-3614, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34155336

RESUMO

Members of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish and global wastewater treatment plants. The two most abundant species worldwide revealed in situ dynamics of important intracellular storage polymers, measured by FISH-Raman in activated sludge from four full-scale EBPR plants and from a lab-scale reactor fed with different substrates. Moreover, seven distinct Dechloromonas species were determined from a set of ten high-quality metagenome-assembled genomes (MAGs) from Danish EBPR plants, each encoding the potential for polyphosphate (poly-P), glycogen, and polyhydroxyalkanoates (PHA) accumulation. The two species exhibited an in situ phenotype in complete accordance with the metabolic information retrieved by the MAGs, with dynamic levels of poly-P, glycogen, and PHA during feast-famine anaerobic-aerobic cycling, legitimately placing these microorganisms among the important PAOs. They are potentially involved in denitrification showing niche partitioning within the genus and with other important PAOs. As no isolates are available for the two species, we propose the names Candidatus Dechloromonas phosphoritropha and Candidatus Dechloromonas phosphorivorans.


Assuntos
Polifosfatos , Purificação da Água , Reatores Biológicos , Hibridização in Situ Fluorescente , Fósforo , RNA Ribossômico 16S/genética , Esgotos
4.
Front Microbiol ; 11: 63, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32063897

RESUMO

Acetogens have the ability to fixate carbon during fermentation by employing the Wood-Ljungdahl pathway (WLP), which is highly conserved across Bacteria and Archaea. In a previous study, product stoichometries in galacturonate-limited, anaerobic enrichment cultures of "Candidatus Galacturonibacter soehngenii," from a novel genus within the Lachnospiraceae, suggested the simultaneous operation of a modified Entner-Doudoroff pathway for galacturonate fermentation and a WLP for acetogenesis. However, a draft metagenome-assembled genome (MAG) based on short reads did not reveal homologs of genes encoding a canonical WLP carbon-monoxide-dehydrogenase/acetyl-Coenzyme A synthase (CODH/ACS) complex. In this study, NaH13CO3 fed to chemostat-grown, galacturonate-limited enrichment cultures of "Ca. G. soehngenii" was shown to be incorporated into acetate. Preferential labeling of the carboxyl group of acetate was consistent with acetogenesis via a WLP in which the methyl group of acetate was predominately derived from formate. This interpretation was further supported by high transcript levels of a putative pyruvate-formate lyase gene and very low transcript levels of a candidate gene for formate dehydrogenase. Reassembly of the "Ca. G. soehngenii" MAG with support from long-read nanopore sequencing data produced a single-scaffold MAG, which confirmed the absence of canonical CODH/ACS-complex genes homologs. However, high CO-dehydrogenase activities were measured in cell extracts of "Ca. G. soehngenii" enrichment cultures, contradicting the absence of corresponding homologs in the MAG. Based on the highly conserved amino-acid motif associated with anaerobic Ni-CO dehydrogenase proteins, a novel candidate was identified which could be responsible for the observed activities. These results demonstrate operation of an acetogenic pathway, most probably as a yet unresolved variant of the Wood-Ljungdahl pathway, in anaerobic, galacturonate-limited cultures of "Ca. G. soehngenii."

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA