Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Commun Biol ; 4(1): 1369, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876699

RESUMO

The binding of the major stress-inducible human 70-kDa heat shock protein (Hsp70) to the anionic phospholipid bis-(monoacylglycero)-phosphate (BMP) in the lysosomal membrane is crucial for its impact on cellular pathology in lysosomal storage disorders. However, the conformational features of this protein-lipid complex remain unclear. Here, we apply hydrogen-deuterium exchange mass spectrometry (HDX-MS) to describe the dynamics of the full-length Hsp70 in the cytosol and its conformational changes upon translocation into lysosomes. Using wild-type and W90F mutant proteins, we also map and discriminate the interaction of Hsp70 with BMP and other lipid components of the lysosomal membrane. We identify the N-terminal of the nucleotide binding domain (residues 87-118) as the primary orchestrator of BMP interaction. We show that the conformation of this domain is significantly reorganized in the W90F mutant, explaining its inability to stabilize lysosomal membranes. Overall, our results reveal important new molecular details of the protective effect of Hsp70 in lysosomal storage diseases, which, in turn, could guide future drug development.


Assuntos
Citosol/química , Proteínas de Choque Térmico HSP70/química , Lisofosfolipídeos/metabolismo , Lisossomos/química , Monoglicerídeos/metabolismo , Humanos , Conformação Molecular
3.
Orphanet J Rare Dis ; 15(1): 328, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228797

RESUMO

BACKGROUND: Niemann-Pick disease type C (NPC) is a rare, progressive, neurodegenerative disease associated with neurovisceral manifestations resulting from lysosomal dysfunction and aberrant lipid accumulation. A multicentre, prospective observational study (Clinical Trials.gov ID: NCT02435030) of individuals with genetically confirmed NPC1 or NPC2 receiving routine clinical care was conducted, to prospectively characterize and measure NPC disease progression and to investigate potential NPC-related biomarkers versus healthy individuals. Progression was measured using the abbreviated 5-domain NPC Clinical Severity Scale (NPCCSS), 17-domain NPCCSS and NPC clinical database (NPC-cdb) score. Cholesterol esterification and heat shock protein 70 (HSP70) levels were assessed from peripheral blood mononuclear cells (PBMCs), cholestane-3ß,5α-,6ß-triol (cholestane-triol) from serum, and unesterified cholesterol from both PBMCs and skin biopsy samples. The inter- and intra-rater reliability of the 5-domain NPCCSS was assessed by 13 expert clinicians' rating of four participants via video recordings, repeated after ≥ 3 weeks. Intraclass correlation coefficients (ICCs) were calculated. RESULTS: Of the 36 individuals with NPC (2-18 years) enrolled, 31 (86.1%) completed the 6-14-month observation period; 30/36 (83.3%) were receiving miglustat as part of routine clinical care. A mean (± SD) increase in 5-domain NPCCSS scores of 1.4 (± 2.9) was observed, corresponding to an annualized progression rate of 1.5. On the 17-domain NPCCSS, a mean (± SD) progression of 2.7 (± 4.0) was reported. Compared with healthy individuals, the NPC population had significantly lower levels of cholesterol esterification (p < 0.0001), HSP70 (p < 0.0001) and skin unesterified cholesterol (p = 0.0006). Cholestane-triol levels were significantly higher in individuals with NPC versus healthy individuals (p = 0.008) and correlated with the 5-domain NPCCSS (Spearman's correlation coefficient = 0.265, p = 0.0411). The 5-domain NPCCSS showed high ICC agreement in inter-rater reliability (ICC = 0.995) and intra-rater reliability (ICC = 0.937). CONCLUSIONS: Progression rates observed were consistent with other reports on disease progression in NPC. The 5-domain NPCCSS reliability study supports its use as an abbreviated alternative to the 17-domain NPCCSS that focuses on the most relevant domains of the disease. The data support the use of cholestane-triol as a disease monitoring biomarker and the novel methods of measuring unesterified cholesterol could be applicable to support NPC diagnosis. Levels of HSP70 in individuals with NPC were significantly decreased compared with healthy individuals. TRIAL REGISTRATION: CT-ORZY-NPC-001: ClincalTrials.gov NCT02435030, Registered 6 May 2015, https://clinicaltrials.gov/ct2/show/NCT02435030 ; EudraCT 2014-005,194-37, Registered 28 April 2015, https://www.clinicaltrialsregister.eu/ctr-search/trial/2014-005194-37/DE . OR-REL-NPC-01: Unregistered.


Assuntos
Doenças Neurodegenerativas , Doença de Niemann-Pick Tipo C , Biomarcadores , Progressão da Doença , Humanos , Leucócitos Mononucleares , Estudos Prospectivos , Reprodutibilidade dos Testes
4.
Mol Metab ; 28: 135-143, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31327756

RESUMO

OBJECTIVE: Heat Shock Proteins (HSPs) maintain cellular homeostasis under stress. HSP70 represents a major stress-inducible family member and has been identified as a druggable target in inherited cholesterol-sphingolipid storage diseases. We investigated if HSP70 modulates cholesterol accumulation in more common conditions related to atherogenesis. METHODS: We studied the effects of recombinant HSP70 in cholesterol-laden primary macrophages from human blood donors and pharmacological HSP70 upregulation in high-cholesterol diet fed zebrafish. RESULTS: Recombinant HSP70 facilitated cholesterol removal from primary human macrophage foam cells. RNA sequencing revealed that HSP70 induced a robust transcriptional re-programming, including upregulation of key targets of liver X receptors (LXR), master regulators of whole-body cholesterol removal. Mechanistically, HSP70 interacted with the macrophage LXRalpha promoter, increased LXRalpha and its target mRNAs, and led to elevated levels of key proteins facilitating cholesterol efflux, including ATP-binding cassette transporters A1 and G1. Pharmacological augmentation of endogenous HSP70 in high-cholesterol diet fed zebrafish activated LXR and its target mRNAs and reduced cholesterol storage at the whole organism level. CONCLUSION: These data demonstrate that HSP70 exerts a cholesterol lowering effect in primary human cells and animals and uncover a nuclear action of HSP70 in mediating cross-talk between HSP and LXR transcriptional regulation.


Assuntos
Colesterol/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Receptores X do Fígado/metabolismo , Animais , Colesterol/administração & dosagem , Dieta , Humanos , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Proteínas Recombinantes/metabolismo , Peixe-Zebra
5.
EBioMedicine ; 38: 142-153, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30497978

RESUMO

BACKGROUND: Gaucher Disease is caused by mutations of the GBA gene which encodes the lysosomal enzyme acid beta-glucosidase (GCase). GBA mutations commonly affect GCase function by perturbing its protein homeostasis rather than its catalytic activity. Heat shock proteins are well known cytoprotective molecules with functions in protein homeostasis and lysosomal function and their manipulation has been suggested as a potential therapeutic strategy for GD. The investigational drug arimoclomol, which is in phase II/III clinical trials, is a well-characterized HSP amplifier and has been extensively clinically tested. Importantly, arimoclomol efficiently crosses the blood-brain-barrier presenting an opportunity to target the neurological manifestations of GD, which remains without a disease-modifying therapy. METHODS: We used a range of biological and biochemical in vitro assays to assess the effect of arimoclomol on GCase activity in ex vivo systems of primary fibroblasts and neuronal-like cells from GD patients. FINDINGS: We found that arimoclomol induced relevant HSPs such as ER-resident HSP70 (BiP) and enhanced the folding, maturation, activity, and correct cellular localization of mutated GCase across several genotypes including the common L444P and N370S mutations in primary cells from GD patients. These effects where recapitulated in a human neuronal model of GD obtained by differentiation of multipotent adult stem cells. INTERPRETATION: These data demonstrate the potential of HSP-targeting therapies in GCase-deficiencies and strongly support the clinical development of arimoclomol as a potential therapeutic option for the neuronopathic forms of GD. FUNDING: The research was funded by Orphazyme A/S, Copenhagen, Denmark.


Assuntos
Glucosilceramidase/química , Glucosilceramidase/metabolismo , Hidroxilaminas/farmacologia , Lisossomos/metabolismo , Redobramento de Proteína/efeitos dos fármacos , Linhagem Celular , Retículo Endoplasmático/metabolismo , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Glucosilceramidase/genética , Complexo de Golgi/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Mutação , Neurônios , Processamento de Proteína Pós-Traducional , Transporte Proteico
6.
Sci Transl Med ; 8(355): 355ra118, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27605553

RESUMO

Lysosomal storage diseases (LSDs) often manifest with severe systemic and central nervous system (CNS) symptoms. The existing treatment options are limited and have no or only modest efficacy against neurological manifestations of disease. We demonstrate that recombinant human heat shock protein 70 (HSP70) improves the binding of several sphingolipid-degrading enzymes to their essential cofactor bis(monoacyl)glycerophosphate in vitro. HSP70 treatment reversed lysosomal pathology in primary fibroblasts from 14 patients with eight different LSDs. HSP70 penetrated effectively into murine tissues including the CNS and inhibited glycosphingolipid accumulation in murine models of Fabry disease (Gla(-/-)), Sandhoff disease (Hexb(-/-)), and Niemann-Pick disease type C (Npc1(-/-)) and attenuated a wide spectrum of disease-associated neurological symptoms in Hexb(-/-) and Npc1(-/-) mice. Oral administration of arimoclomol, a small-molecule coinducer of HSPs that is currently in clinical trials for Niemann-Pick disease type C (NPC), recapitulated the effects of recombinant human HSP70, suggesting that heat shock protein-based therapies merit clinical evaluation for treating LSDs.


Assuntos
Proteínas de Choque Térmico/uso terapêutico , Esfingolipidoses/tratamento farmacológico , Administração Intravenosa , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Proteínas Morfogenéticas Ósseas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Doença de Fabry/tratamento farmacológico , Doença de Fabry/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Glicoesfingolipídeos/metabolismo , Proteínas de Choque Térmico/farmacologia , Humanos , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Injeções Intraperitoneais , Peptídeos e Proteínas de Sinalização Intracelular , Lisossomos/efeitos dos fármacos , Lisossomos/patologia , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Proteínas/metabolismo , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Esfingolipidoses/patologia , Distribuição Tecidual
7.
EBioMedicine ; 9: 130-139, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27333030

RESUMO

Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Antagonistas dos Receptores Histamínicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Adulto , Apoptose/efeitos dos fármacos , Astemizol/farmacologia , Astemizol/uso terapêutico , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Cátions/química , Linhagem Celular Tumoral , Estudos de Coortes , Dinamarca , Reposicionamento de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos/farmacologia , Humanos , Loratadina/farmacologia , Loratadina/uso terapêutico , Neoplasias Pulmonares/mortalidade , Lisossomos/metabolismo , Modelos de Riscos Proporcionais , Sistema de Registros , Taxa de Sobrevida
8.
Autophagy ; 12(5): 833-49, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27070082

RESUMO

Sphingomyelin is an essential cellular lipid that traffics between plasma membrane and intracellular organelles until directed to lysosomes for SMPD1 (sphingomyelin phosphodiesterase 1)-mediated degradation. Inactivating mutations in the SMPD1 gene result in Niemann-Pick diseases type A and B characterized by sphingomyelin accumulation and severely disturbed tissue homeostasis. Here, we report that sphingomyelin overload disturbs the maturation and closure of autophagic membranes. Niemann-Pick type A patient fibroblasts and SMPD1-depleted cancer cells accumulate elongated and unclosed autophagic membranes as well as abnormally swollen autophagosomes in the absence of normal autophagosomes and autolysosomes. The immature autophagic membranes are rich in WIPI2, ATG16L1 and MAP1LC3B but display reduced association with ATG9A. Contrary to its normal trafficking between plasma membrane, intracellular organelles and autophagic membranes, ATG9A concentrates in transferrin receptor-positive juxtanuclear recycling endosomes in SMPD1-deficient cells. Supporting a causative role for ATG9A mistrafficking in the autophagy defect observed in SMPD1-deficient cells, ectopic ATG9A effectively reverts this phenotype. Exogenous C12-sphingomyelin induces a similar juxtanuclear accumulation of ATG9A and subsequent defect in the maturation of autophagic membranes in healthy cells while the main sphingomyelin metabolite, ceramide, fails to revert the autophagy defective phenotype in SMPD1-deficient cells. Juxtanuclear accumulation of ATG9A and defective autophagy are also evident in tissues of smpd1-deficient mice with a subsequent inability to cope with kidney ischemia-reperfusion stress. These data reveal sphingomyelin as an important regulator of ATG9A trafficking and maturation of early autophagic membranes.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Esfingomielinas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Autofagossomos/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Membrana Celular/metabolismo , Endossomos/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença de Niemann-Pick Tipo A/genética , Doença de Niemann-Pick Tipo A/metabolismo , Doença de Niemann-Pick Tipo A/patologia , Transporte Proteico , RNA Interferente Pequeno/genética , Receptores da Transferrina/metabolismo , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/genética
9.
Cancer Cell ; 24(3): 379-93, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24029234

RESUMO

Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome-destabilizing experimental anticancer agent siramesine inhibits ASM by interfering with the binding of ASM to its essential lysosomal cofactor, bis(monoacylglycero)phosphate. Like siramesine, several clinically relevant ASM inhibitors trigger cancer-specific lysosomal cell death, reduce tumor growth in vivo, and revert multidrug resistance. Their cancer selectivity is associated with transformation-associated reduction in ASM expression and subsequent failure to maintain sphingomyelin hydrolysis during drug exposure. Taken together, these data identify ASM as an attractive target for cancer therapy.


Assuntos
Transformação Celular Neoplásica/metabolismo , Inibidores Enzimáticos/farmacologia , Lisossomos/metabolismo , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Feminino , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Indóis/farmacologia , Indóis/toxicidade , Camundongos , Camundongos Transgênicos , Fenótipo , Compostos de Espiro/farmacologia , Compostos de Espiro/toxicidade , Tocoferóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
PLoS One ; 7(10): e45381, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071517

RESUMO

Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets.


Assuntos
Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Proteínas do Citoesqueleto/fisiologia , Lisossomos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Cinesinas/antagonistas & inibidores , Cinesinas/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Miosinas/fisiologia , Pirimidinas/farmacologia , RNA Interferente Pequeno/farmacologia , Tionas/farmacologia , Tropomiosina/fisiologia
11.
Nat Struct Mol Biol ; 19(8): 803-10, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22773103

RESUMO

Lens epithelium-derived growth factor p75 splice variant (LEDGF) is a chromatin-binding protein known for its antiapoptotic activity and ability to direct human immunodeficiency virus into active transcription units. Here we show that LEDGF promotes the repair of DNA double-strand breaks (DSBs) by the homologous recombination repair pathway. Depletion of LEDGF impairs the recruitment of C-terminal binding protein interacting protein (CtIP) to DNA DSBs and the subsequent CtIP-dependent DNA-end resection. LEDGF is constitutively associated with chromatin through its Pro-Trp-Trp-Pro (PWWP) domain that binds preferentially to epigenetic methyl-lysine histone markers characteristic of active transcription units. LEDGF binds CtIP in a DNA damage-dependent manner, thereby enhancing its tethering to the active chromatin and facilitating its access to DNA DSBs. These data highlight the role of PWWP-domain proteins in DNA repair and provide a molecular explanation for the antiapoptotic and cancer cell survival-activities of LEDGF.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Reparo de DNA por Recombinação/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases , HIV/genética , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Integração Viral
12.
Biochem Soc Trans ; 38(6): 1479-83, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21118111

RESUMO

Lysosomes, with their arsenal of catabolic enzymes and crucial metabolic housekeeping functions are experiencing a revived research interest after having lived a rather quiet life for the last few decades. With the discovery of the interaction of the lysosomes with another ancient component of cellular homoeostasis, the molecular chaperone HSP70 (heat-shock protein 70), the stage seems set for further discoveries of the mechanisms regulating cellular and physiological stress responses to otherwise detrimental challenges.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/terapia , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Homeostase , Humanos , Lisofosfolipídeos/metabolismo , Doenças por Armazenamento dos Lisossomos/fisiopatologia , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Modelos Moleculares , Monoglicerídeos/metabolismo , Ligação Proteica , Conformação Proteica , Esfingomielina Fosfodiesterase/metabolismo , Estresse Fisiológico
13.
Cell Cycle ; 9(12): 2305-9, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20519957

RESUMO

Heat shock protein 70 (Hsp70) is an evolutionary highly conserved molecular chaperone. Upon cancer-associated translocation to the lysosomal compartment, it promotes cell survival by inhibiting lysosomal membrane permeabilization, a hallmark of stress-induced death. We have recently shown that Hsp70 stabilizes lysosomes by binding to the endo-lysosomal lipid bis(monoacylglycero)phosphate (BMP), an essential co-factor for lysosomal sphingolipid catabolism. The Hsp70-BMP interaction enhances the activity of acid sphingomyelinase, an important enzyme that hydrolyzes sphingomyelin. Importantly, treatment with recombinant Hsp70 effectively reverts the dramatic increase in lysosomal volume and decrease in lysosomal stability in cells from patients with Niemann-Pick disease, a genetic disorder associated with reduced acid sphingomyelinase activity. These findings give new insight into the mechanisms controlling lysosomal stability and integrity, and open new exciting possibilities for the treatment of cancer as well as Niemann-Pick disease.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Lisossomos/enzimologia , Esfingolipídeos/metabolismo , Proteínas de Choque Térmico HSP70/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo
14.
Nature ; 463(7280): 549-53, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20111001

RESUMO

Heat shock protein 70 (Hsp70) is an evolutionarily highly conserved molecular chaperone that promotes the survival of stressed cells by inhibiting lysosomal membrane permeabilization, a hallmark of stress-induced cell death. Clues to its molecular mechanism of action may lay in the recently reported stress- and cancer-associated translocation of a small portion of Hsp70 to the lysosomal compartment. Here we show that Hsp70 stabilizes lysosomes by binding to an endolysosomal anionic phospholipid bis(monoacylglycero)phosphate (BMP), an essential co-factor for lysosomal sphingomyelin metabolism. In acidic environments Hsp70 binds with high affinity and specificity to BMP, thereby facilitating the BMP binding and activity of acid sphingomyelinase (ASM). The inhibition of the Hsp70-BMP interaction by BMP antibodies or a point mutation in Hsp70 (Trp90Phe), as well as the pharmacological and genetic inhibition of ASM, effectively revert the Hsp70-mediated stabilization of lysosomes. Notably, the reduced ASM activity in cells from patients with Niemann-Pick disease (NPD) A and B-severe lysosomal storage disorders caused by mutations in the sphingomyelin phosphodiesterase 1 gene (SMPD1) encoding for ASM-is also associated with a marked decrease in lysosomal stability, and this phenotype can be effectively corrected by treatment with recombinant Hsp70. Taken together, these data open exciting possibilities for the development of new treatments for lysosomal storage disorders and cancer with compounds that enter the lysosomal lumen by the endocytic delivery pathway.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Doenças de Niemann-Pick/metabolismo , Doenças de Niemann-Pick/patologia , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Concentração de Íons de Hidrogênio , Membranas Intracelulares/metabolismo , Lisofosfolipídeos/metabolismo , Monoglicerídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
15.
Cell ; 137(4): 773-83, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19450522

RESUMO

Autophagy has been implicated as a prosurvival mechanism to restrict programmed cell death (PCD) associated with the pathogen-triggered hypersensitive response (HR) during plant innate immunity. This model is based on the observation that HR lesions spread in plants with reduced autophagy gene expression. Here, we examined receptor-mediated HR PCD responses in autophagy-deficient Arabidopsis knockout mutants (atg), and show that infection-induced lesions are contained in atg mutants. We also provide evidence that HR cell death initiated via Toll/Interleukin-1 (TIR)-type immune receptors through the defense regulator EDS1 is suppressed in atg mutants. Furthermore, we demonstrate that PCD triggered by coiled-coil (CC)-type immune receptors via NDR1 is either autophagy-independent or engages autophagic components with cathepsins and other unidentified cell death mediators. Thus, autophagic cell death contributes to HR PCD and can function in parallel with other prodeath pathways.


Assuntos
Apoptose , Arabidopsis/imunologia , Autofagia , Imunidade Inata , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
16.
J Plant Physiol ; 166(6): 661-6, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18845362

RESUMO

The Arabidopsis ACD11 gene encodes a sphingosine transfer protein and was identified by the accelerated cell death phenotype of the loss of function acd11 mutant, which exhibits heightened expression of genes involved in the disease resistance hypersensitive response (HR). We used ACD11 as bait in a yeast two-hybrid screen of an Arabidopsis cDNA library to identify ACD11 interacting proteins. One interactor identified is a protein of unknown function with an RNA recognition motif (RRM) designated BPA1 (binding partner of ACD11). Co-immunoprecipitation experiments confirmed the ACD11-BPA1 interactions in vivo and in vitro. Two other ACD11 interactors (PRA7 and PRA8) are homologous to each other and to mammalian PRA1, and both were subsequently shown to interact with BPA1 in yeast. A fourth interactor (VAP27-1) is homologous to mammalian VAP-A, and was found to interact more strongly with a homolog of ACD11 than ACD11 itself. All interactors were shown to be associated with membrane fractions, suggesting that ACD11 function could be related to the regulation of membrane compartments.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Citosol/metabolismo , Laminas/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
17.
FEBS J ; 275(17): 4378-88, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18657186

RESUMO

The Arabidopsis acd11 mutant exhibits runaway, programmed cell death due to the loss of a putative sphingosine transfer protein (ACD11) with homology to mammalian GLTP. We demonstrate that transgenic expression in Arabidopsis thaliana of human GLTP partially suppressed the phenotype of the acd11 null mutant, resulting in delayed programmed cell death development and plant survival. Surprisingly, a GLTP mutant form impaired in glycolipid transfer activity also complemented the acd11 mutants. To understand the relationship between functional complementarity and transfer activity, we generated site-specific mutants in ACD11 based on homologous GLTP residues required for glycolipid transfer. We show that these ACD11 mutant forms are impaired in their in vitro transfer activity of sphingolipids. However, transgenic expression of these mutant forms fully complemented acd11 mutant cell death, and transgenic plants showed normal induction of hypersensitive cell death upon infection with avirulent strains of Pseudomonas syringae. The significance of these findings with respect to the function(s) of ACD11 in sphingolipid transport and cell death regulation is discussed.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Arabidopsis/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Mutação , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Western Blotting , Proteínas de Transporte/química , Primers do DNA , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
18.
EMBO J ; 24(14): 2579-89, 2005 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-15990873

RESUMO

Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used yeast two-hybrid screening to identify the MPK4 substrate MKS1. Analyses of transgenic plants and genome-wide transcript profiling indicated that MKS1 is required for full SA-dependent resistance in mpk4 mutants, and that overexpression of MKS1 in wild-type plants is sufficient to activate SA-dependent resistance, but does not interfere with induction of a defense gene by JA. Further yeast two-hybrid screening revealed that MKS1 interacts with the WRKY transcription factors WRKY25 and WRKY33. WRKY25 and WRKY33 were shown to be in vitro substrates of MPK4, and a wrky33 knockout mutant was found to exhibit increased expression of the SA-related defense gene PR1. MKS1 may therefore contribute to MPK4-regulated defense activation by coupling the kinase to specific WRKY transcription factors.


Assuntos
Proteínas de Arabidopsis/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas/metabolismo , Plantas/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Imunidade Inata , Imuno-Histoquímica , Dados de Sequência Molecular , Proteínas Nucleares , Fosforilação , Plantas/imunologia , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA