Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Am J Bot ; 111(5): e16329, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38708705

RESUMO

PREMISE: Gynodioecy is a rare sexual system in which two genders (sensu Lloyd, 1980), cosexuals and females, coexist. To survive, female plants must compensate for their lack of siring capacity and male attractiveness. In European chestnut (Castanea sativa), an outcrossing tree, self-pollination reduces fruit set in cosexual individuals because of late-acting self-incompatibility and early inbreeding depression. Could this negative sexual interaction explain the presence of females in this species? METHODS: We studied gender variation in wild populations of European chestnut. In addition, we compared fruit set (the proportion of flowers giving fruits) and other key female fitness components as well as reproductive allocation between genders. We then performed emasculation experiments in cosexual trees, by removing nectar-producing fertile male inflorescences. We also removed sterile but nectar-producing male inflorescences from female trees, as a control. RESULTS: We found a highly variable proportion of male-sterile individuals in the wild in European chestnut. In the experimental plot, trees from each gender had similar size, flower density, and burr set, but different fruit set. Removing nectar-producing male inflorescences from branches or entire trees increased fruit set in cosexual but not in female trees. CONCLUSIONS: These results show that self-pollination impairs fruit set in cosexual trees. Female trees avoid these problems as they do not produce pollen but continue to attract pollinators thanks to their rewarding male-sterile inflorescences, resulting in a much higher fruit set than in cosexuals. This demonstrates that even outcrossed plants can benefit from the cessation of self-pollination, to the point that unisexuality can evolve.


Assuntos
Fagaceae , Frutas , Polinização , Fagaceae/fisiologia , Frutas/fisiologia , Flores/fisiologia , Árvores/fisiologia , Autoincompatibilidade em Angiospermas , Reprodução
2.
Am J Bot ; 110(8): e16204, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37342965

RESUMO

PREMISE: Intersexual mating facilitation in flowering plants has been largely underexplored. Duodichogamy is a rare flowering system in which individual plants flower in the sequence male-female-male. We studied the adaptive advantages of this flowering system using chestnuts (Castanea spp., Fagaceae) as models. These insect-pollinated trees produce many unisexual male catkins responsible for a first staminate phase and a few bisexual catkins responsible for a second staminate phase. We hypothesized that duodichogamy increases female mating success by facilitating pollen deposition on stigmas of the rewardless female flowers through their proximity with attractive male flowers responsible for the minor staminate phase. METHODS: We monitored insect visits to 11 chestnut trees during the entire flowering period and explored reproductive traits of all known duodichogamous species using published evidence. RESULTS: In chestnuts, insects visited trees more frequently during the first staminate phase but visited female flowers more frequently during the second staminate phase. All 21 animal-pollinated duodichogamous species identified are mass-flowering woody plants at high risk of self-pollination. In 20 of 21 cases, gynoecia (female flower parts) are located close to androecia (male flower parts), typically those responsible for the second minor staminate phase, whereas androecia are often distant from gynoecia. CONCLUSIONS: Our results suggest that duodichogamy increases female mating success by facilitating pollen deposition on stigmas by means of the attractiveness of the associated male flowers while effectively limiting self-pollination.


Assuntos
Magnoliopsida , Árvores , Animais , Reprodução , Polinização , Insetos , Flores , Pólen
3.
Mol Ecol ; 32(5): 1211-1228, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36484548

RESUMO

Most seed plants produce both pollen and ovules. In principle, pollen export could interfere with pollen import through self-pollination, resulting in ovule usurpation and reduced fruit set. Evidence for such interference exists under experimental settings but its importance under natural conditions is unknown. To test for sexual interference in nature, it is necessary to study together mating system, through paternity analyses, and fruit set, the proportion of flowers giving seeds or fruits. We developed a new model combining both processes, using chestnut (Castanea) as case study. We carried out a paternity analysis in an intensively studied plot of 273 trees belonging to three interfertile chestnut species and including a range of individuals with more or less functional stamens, resulting in a large data set of 1924 mating events. We then measured fruit set on 216 of these trees. Fruit set of male-fertile trees was much lower than that of male-sterile trees. Our process-based model shows that pollen is not limiting in the study site and hence cannot account for reduced fruit set. It also indicates that self-pollination is high (74%) but selfing rate is low (4%). Self-pollen is less competitive than cross-pollen, reducing sexual interference, but not sufficiently, as many ovules end up being self-fertilized, 95% of which abort before fruit formation, resulting in the loss of 46% of the fruit crop. These results suggest that the main cause of reduced reproductive potential in chestnut is sexual interference by self-pollen, raising questions on its evolutionary origins.


Assuntos
Polinização , Reprodução , Humanos , Sementes/genética , Frutas/genética , Pólen/genética , Árvores , Flores/genética
4.
New Phytol ; 236(3): 1212-1224, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35706383

RESUMO

Ecological character displacement (ECD) refers to a pattern of increased divergence at sites where species ranges overlap caused by competition for resources. Although ECD is believed to be common, there are few in-depth studies that clearly establish its existence, especially in plants. Thus, we have compared leaf traits in allopatric and sympatric populations of two East Asian deciduous oaks: Quercus dentata and Quercus aliena. In contrast to previous studies, we define sympatry and allopatry at a local scale, thereby comparing populations that can or cannot directly interact. Using genetic markers, we found greater genetic divergence between the two oak species growing in mixed stands and inferred that long-term gene flow has predominantly occurred asymmetrically from the cold-tolerant species (Q. dentata) to the warm-demanding later colonizing species (Q. aliena). Analysis of leaf traits revealed greater divergence in mixed than in pure oak stands. This was mostly due to the later colonizing species being characterized by more resource-conservative traits in the presence of the other species. Controlling for relevant environmental differences did not alter these conclusions. These results suggest that asymmetric trait divergence can take place where species coexist, possibly due to the imbalance in demographic history of species resulting in asymmetric inter-specific selection pressures.


Assuntos
Quercus , Fluxo Gênico , Marcadores Genéticos , Fenótipo , Quercus/genética , Simpatria
5.
Phytopathology ; 111(6): 1051-1058, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33084526

RESUMO

Although chestnut mosaic disease (ChMD) was described several decades ago, its etiology is still not clear. Using classical approaches and high-throughput sequencing (HTS) techniques, we identified a novel Badnavirus that is a strong etiological candidate for ChMD. Two disease sources from Italy and France were submitted to HTS-based viral indexing. Total RNAs were extracted, ribodepleted, and sequenced on an Illumina NextSeq500 (2 × 150 nt or 2 × 75 nt). In each source, we identified a single contig of ≈7.2 kb that corresponds to a complete circular viral genome and shares homologies with various badnaviruses. The genomes of the two isolates have an average nucleotide identity of 90.5%, with a typical badnaviral genome organization comprising three open reading frames. Phylogenetic analyses and sequence comparisons showed that this virus is a novel species; we propose the name Chestnut mosaic virus (ChMV). Using a newly developed molecular detection test, we systematically detected the virus in symptomatic graft-inoculated indicator plants (chestnut and American oak) as well in chestnut trees presenting typical ChMD symptoms in the field (100 and 87% in France and Italy surveys, respectively). Datamining of publicly available chestnut sequence read archive transcriptomic data allowed the reconstruction of two additional complete ChMV genomes from two Castanea mollissima sources from the United States as well as ChMV detection in C. dentata from the United States. Preliminary epidemiological studies performed in France and central eastern Italy showed that ChMV has a high incidence in some commercial orchards and low within-orchard genetic diversity.


Assuntos
Badnavirus , Fagaceae/virologia , Doenças das Plantas/virologia , Badnavirus/genética , Genoma Viral/genética , Fases de Leitura Aberta/genética , Filogenia
6.
New Phytol ; 226(4): 978-983, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31378946

RESUMO

One of Anthropocene's most daunting challenges for conservation biology is habitat extinction, caused by rapid global change. Tree diversity has persisted through previous episodes of rapid change, even global extinctions. Given the pace of current change, our management of extant diversity needs to facilitate and even enhance the natural ability of trees to adapt and diversify. Numerous processes contribute to this evolutionary flexibility, including introgression, a widespread yet under-studied process. Reproductive networks, in which species remain distinct despite interspecific gene flow, are called syngameons, a concept largely inspired from work focusing on Quercus. Delineating and analyzing such species groups, empirically and theoretically, will provide insights into the nonadditive effects on evolution of numerous partially interfertile species exchanging genetic material episodically under changing environmental conditions. To conserve tree diversity, crossing experiments designed with an empirical and theoretical understanding of the constituent syngameon should be set up to assist diversification and adaptation in the Anthropocene. Our increasingly detailed knowledge of the oak genome and of oak interspecific and intraspecific phenotypic variation will improve our ability to sustain the diversity of this tree through an unpredictable and unprecedented future.


Assuntos
Quercus , Ecossistema , Fluxo Gênico , Hibridização Genética , Quercus/genética , Árvores
7.
Ecol Evol ; 9(8): 4897-4905, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31031952

RESUMO

We investigate chloroplast DNA variation in a hyperdiverse community of tropical rainforest trees in French Guiana, focusing on patterns of intraspecific and interspecific variation. We test whether a species genetic diversity is higher when it has congeners in the community with which it can exchange genes and if shared haplotypes are more frequent in genetically diverse species, as expected in the presence of introgression.We sampled a total of 1,681 individual trees from 472 species corresponding to 198 genera and sequenced them at a noncoding chloroplast DNA fragment.Polymorphism was more frequent in species that have congeneric species in the study site than in those without congeners (30% vs. 12%). Moreover, more chloroplast haplotypes were shared with congeners in polymorphic species than in monomorphic ones (44% vs. 28%).Despite large heterogeneities caused by genus-specific behaviors in patterns of hybridization, these results suggest that the higher polymorphism in the presence of congeners is caused by local introgression rather than by incomplete lineage sorting. Our findings suggest that introgression has the potential to drive intraspecific genetic diversity in species-rich tropical forests.

8.
Ecology ; 99(7): 1530-1546, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29729183

RESUMO

Persistence of natural populations during periods of climate change is likely to depend on migration (range shifts) or adaptation. These responses were traditionally considered discrete processes and conceptually divided into the realms of ecology and evolution. In a milestone paper, Davis and Shaw (2001) Science 292:673 argued that the interplay of adaptation and migration was central to biotic responses to Quaternary climate, but since then there has been no synthesis of efforts made to set up this research program. Here we review some of the salient findings from molecular genetic studies assessing ecological and evolutionary responses to Quaternary climate change. These studies have revolutionized our understanding of population processes associated with past species migration. However, knowledge remains limited about the role of natural selection for local adaptation of populations to Quaternary environmental fluctuations and associated range shifts, and for the footprints this might have left on extant populations. Next-generation sequencing technologies, high-resolution paleoclimate analyses, and advances in population genetic theory offer an unprecedented opportunity to test hypotheses about adaptation through time. Recent population genomics studies have greatly improved our understanding of the role of contemporary adaptation to local environments in shaping spatial patterns of genetic diversity across modern-day landscapes. Advances in this burgeoning field provide important conceptual and methodological bases to decipher the historical role of natural selection and assess adaptation to past environmental variation. We suggest that a process called "temporal conditional neutrality" has taken place: some alleles favored in glacial environments become selectively neutral in modern-day conditions, whereas some alleles that had been neutral during glacial periods become under selection in modern environments. Building on this view, we present a new integrative framework for addressing the interplay of demographic and adaptive evolutionary responses to Quaternary climate dynamics, the research agenda initially envisioned by Davis and Shaw (2001) Science 292:673.


Assuntos
Mudança Climática , Variação Genética , Aclimatação , Adaptação Fisiológica , Seleção Genética
9.
Evol Appl ; 8(10): 972-87, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26640522

RESUMO

Disruption of species interactions is a key issue in climate change biology. Interactions involving forest trees may be particularly vulnerable due to evolutionary rate limitations imposed by long generation times. One mitigation strategy for such impacts is Climate matching - the augmentation of local native tree populations by input from nonlocal populations currently experiencing predicted future climates. This strategy is controversial because of potential cascading impacts on locally adapted animal communities. We explored these impacts using abundance data for local native gallwasp herbivores sampled from 20 provenances of sessile oak (Quercus petraea) planted in a common garden trial. We hypothesized that non-native provenances would show (i) declining growth performance with increasing distance between provenance origin and trial site, and (ii) phenological differences to local oaks that increased with latitudinal differences between origin and trial site. Under a local adaptation hypothesis, we predicted declining gallwasp abundance with increasing phenological mismatch between native and climate-matched trees. Both hypotheses for oaks were supported. Provenance explained significant variation in gallwasp abundance, but no gall type showed the relationship between abundance and phenological mismatch predicted by a local adaptation hypothesis. Our results show that climate matching would have complex and variable impacts on oak gall communities.

10.
PLoS One ; 10(5): e0127516, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26000791

RESUMO

In contrast to biological invasions, translocations of individuals within a species range are understudied, due to difficulties in systematically detecting them. This results in limited knowledge about the corresponding processes and uncertainties regarding the status of extant populations. European larch, a forest tree whose fragmented native distribution is restricted to the Alps and to other Central European mountains, has been massively planted for at least 300 years. Here we focus on the genetic characterization of translocations having taken place within its native range. Microsatellite variation at 13 nuclear loci and sequence data of two mitochondrial DNA fragments were analyzed on the basis of a comprehensive range-wide population sample. Two complementary methods (Geneclass and Structure) were used to infer translocation events based on nuclear data whereas mitochondrial data were used for validation of these inferences. Using Geneclass, we found translocation events in a majority of populations. Additional cases of translocation and many instances of admixture were identified using Structure, thanks to the clear-cut ancestral genetic structure detected in this species. In particular, a strong divide between Alpine and Central European populations, also apparent at mitochondrial markers, helped uncover details on translocation events and related processes. Translocations and associated admixture events were found to be heterogeneously distributed across the species range, with a particularly high frequency in Central Europe. Furthermore, translocations frequently involved multiple geographic sources, some of which were over-represented. Our study illustrates the importance of range-wide investigations for tracing translocations back to their origins and for revealing some of their consequences. It provides some first clues for developing suitable conservation and management strategies.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Larix/genética , Repetições de Microssatélites , Translocação Genética , Europa (Continente) , Loci Gênicos , Genética Populacional , Análise de Sequência de DNA
12.
New Phytol ; 204(3): 715-729, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25312611

RESUMO

Despite their critical importance for understanding the local effects of global climate change on biodiversity, glacial microrefugia are not well studied because they are difficult to detect by using classical palaeoecological or population genetics approaches. We used soil macrofossil charcoal analysis to uncover the presence of cryptic glacial refugia for European beech (Fagus sylvatica) and other tree species in the Landes de Gascogne (southwestern France). Using botanical identification and direct radiocarbon dating (140 (14) C-dates) of macrofossil charcoal extracted from mineral soils, we reconstructed the glacial and postglacial history of all extant beech stands in the region (n = 11). Soil charcoal macrofossils were found in all sites, allowing the identification of up to at least 14 distinct fire events per site. There was direct evidence of the presence of beech during the last glacial period at three sites. Beech was detected during Heinrich stadial-1, one of the coldest and driest intervals of the last glacial period in Western Europe. Together with previous results on the genetic structure of the species in the region, these findings suggest that beech persisted in situ in several microrefugia through full glacial and interglacial periods up to the present day.


Assuntos
Clima Desértico , Fagus , Florestas , Fósseis , Solo , Evolução Biológica , Carvão Vegetal , Clima , França , Marcadores Genéticos , Variação Genética , Camada de Gelo
13.
Mol Ecol ; 23(17): 4331-43, 2014 09.
Artigo em Inglês | MEDLINE | ID: mdl-24762107

RESUMO

Reproductive strategies of closely related species distributed along successional gradients should differ as a consequence of the trade-off between competition and colonization abilities. We compared male reproductive strategies of Quercus robur and Q. petraea, two partly interfertile European oak species with different successional status. In the studied even-aged stand, trees of the late-successional species (Q. petraea) grew faster and suffered less from intertree competition than trees of the early-successional species (Q. robur). A large-scale paternity study and a spatially explicit individual-based mating model were used to estimate parameters of pollen production and dispersal as well as sexual barriers between species. Male fecundity was found to be dependent both on a tree's circumference and on its environment, particularly so for Q. petraea. Pollen dispersal was greater and more isotropic in Q. robur than in Q. petraea. Premating barriers to hybridization were strong in both species, but more so in Q. petraea than in Q. robur. Hence, predictions based on the competition-colonization trade-off are well supported, whereas the sexual barriers themselves seem to be shaped by colonization dynamics.


Assuntos
Quercus/crescimento & desenvolvimento , Quercus/genética , Ecossistema , Fertilidade , França , Genótipo , Hibridização Genética , Modelos Genéticos , Fenótipo , Pólen , Reprodução/genética
14.
Mol Ecol ; 22(17): 4397-412, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23980761

RESUMO

Extant rear-edge populations located in former glacial refugia remain understudied despite their high conservation value. These populations should have experienced strong genetic drift due to their small size and long isolation. Moreover, the prolonged action of isolation by distance in refugial areas should result in stronger regional spatial genetic structure (SGS) than in recolonized areas, but empirical tests of this prediction are scarce. To fill this gap, we first used a set of 16 microsatellite markers to investigate the genetic structure of European beech in France in 65 populations from three refugial areas and one control recolonized (nonrefugial) area. Then, using the same approach, we reanalysed published isozyme data from 375 populations distributed across the entire species range. We found stronger genetic differentiation among populations in refugia than in recolonized areas. However, contrary to expectations, regional SGS was lower within refugia than within recolonized areas. Published studies presenting similar analyses suggest that our results could have generality across different biogeographical settings and types of organisms. Strong and prolonged genetic drift in refugial areas could have erased the signature of range expansions that is still visible in recolonized areas. Our results therefore suggest that Pleistocene population isolation has played a key role in increasing the genetic complexity of extant rear-edge populations.


Assuntos
Fagus/genética , Variação Genética , Genética Populacional , Teorema de Bayes , Mudança Climática , Análise por Conglomerados , DNA de Plantas/genética , Ecossistema , Fagus/enzimologia , França , Deriva Genética , Isoenzimas , Repetições de Microssatélites
15.
PLoS One ; 8(6): e68267, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818990

RESUMO

Although interfertility is the key criterion upon which Mayr's biological species concept is based, it has never been applied directly to delimit species under natural conditions. Our study fills this gap. We used the interfertility criterion to delimit two closely related oak species in a forest stand by analyzing the network of natural mating events between individuals. The results reveal two groups of interfertile individuals connected by only few mating events. These two groups were largely congruent with those determined using other criteria (morphological similarity, genotypic similarity and individual relatedness). Our study, therefore, shows that the analysis of mating networks is an effective method to delimit species based on the interfertility criterion, provided that adequate network data can be assembled. Our study also shows that although species boundaries are highly congruent across methods of species delimitation, they are not exactly the same. Most of the differences stem from assignment of individuals to an intermediate category. The discrepancies between methods may reflect a biological reality. Indeed, the interfertility criterion is an environment-dependant criterion as species abundances typically affect rates of hybridization under natural conditions. Thus, the methods of species delimitation based on the interfertility criterion are expected to give results slightly different from those based on environment-independent criteria (such as the genotypic similarity criteria). However, whatever the criterion chosen, the challenge we face when delimiting species is to summarize continuous but non-uniform variations in biological diversity. The grade of membership model that we use in this study appears as an appropriate tool.


Assuntos
Especiação Genética , Hibridização Genética , Quercus/genética , Quercus/fisiologia , Simulação por Computador , Ecossistema , Fertilidade/genética , Fertilidade/fisiologia , Genótipo , Modelos Genéticos , Polinização/genética , Polinização/fisiologia , Quercus/classificação , Reprodução/genética , Reprodução/fisiologia , Especificidade da Espécie
16.
Proc Biol Sci ; 280(1764): 20131070, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23782887

RESUMO

Numerous plant species are shifting their range polewards in response to ongoing climate change. Range shifts typically involve the repeated establishment and growth of leading-edge populations well ahead of the main species range. How these populations recover from founder events and associated diversity loss remains poorly understood. To help fill this gap, we exhaustively investigated a newly established population of holm oak (Quercus ilex) growing more than 30 km ahead of the nearest larger stands. Pedigree reconstructions showed that plants belong to two non-overlapping generations and that the whole population originates from only two founder trees. The four first-generation trees that have reached maturity showed disparate mating patterns despite being full-sibs. Long-distance pollen immigration was notable despite the strong isolation of the stand: 6 per cent gene flow events in acorns collected on the trees (n = 255), and as much as 27 per cent among their established offspring (n = 33). Our results show that isolated leading-edge populations of wind-pollinated forest trees can rapidly restore their genetic diversity through the interacting effects of efficient long-distance pollen flow and purging of inbred individuals during recruitment. They imply that range expansions of these species are primarily constrained by initial propagule arrival rather than by subsequent gene flow.


Assuntos
Efeito Fundador , Genética Populacional , Quercus/genética , França , Fluxo Gênico , Frequência do Gene , Variação Genética , Repetições de Microssatélites , Pólen/genética , Polinização , Sementes/genética , Vento
17.
Mol Ecol ; 22(2): 423-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23173566

RESUMO

Natural hybridization is attracting much interest in modern speciation and conservation biology studies, but the underlying mechanisms remain poorly understood. In particular, it is unclear why environmental changes often increase hybridization rates. To study this question, we surveyed mating events in a mixed oak stand and developed a spatially explicit individual-based hybridization model. This model, where hybridization is frequency-dependent, pollen is nonlimiting and which allows immigrant pollen to compete with local pollen, takes into account species-specific pollen dispersal and sexual barriers to hybridization. The consequences of pollen limitation on hybridization were studied using another simple model. The results indicate that environmental changes could increase hybridization rates through two distinct mechanisms. First, by disrupting the spatial organization of communities, they should decrease the proportion of conspecific pollen available for mating, thus increasing hybridization rates. Second, by decreasing the density of conspecifics, they should increase pollen limitation and thus hybridization rates, as a consequence of chance pollination predominating over deterministic pollen competition. Altogether, our results point to a need for considering hybridization events at the appropriate level of organization and provide new insights into why hybridization rates generally increase in disturbed environments.


Assuntos
Meio Ambiente , Hibridização Genética , Polinização/genética , Quercus/genética , DNA de Plantas/genética , Genótipo , Modelos Genéticos , Peptídeos Cíclicos , Pólen/genética
19.
Mol Ecol Resour ; 12(4): 717-25, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22487486

RESUMO

We have designed two highly polymorphic microsatellite multiplexes for Larix decidua Mill (European larch), a coniferous tree species with a fragmented distribution across Europe. The multiplexes combine microsatellites previously designed for the sister species L. kaempferi and newly identified microsatellites obtained by pyrosequencing of an enriched microsatellite library and subsequent marker candidate selection. As we wanted to target highly polymorphic markers, only microsatellite motifs with a high number of repeats (≥ 12) were selected. An important proportion of the marker candidates presented multiple bands, bad amplification or insufficient polymorphism. Such difficulties were expected owing to the large genome size of the studied species. Our strategy for marker validation followed most recent recommendations for microsatellite development, for example verifying marker quality in terms of polymorphism and accurate allele binning before multiplexing. The most promising loci were combined in two multiplexes, a 7-plex and a 6-plex. These were tested on a sample of 413 individuals from 18 populations distributed across the natural range. The 13 loci had from 9 to 36 alleles. Markers were successfully tested in another laboratory, confirming robustness of the marker protocols. We also tested transferability on six other larch species from Asia and North America. Overall, this study shows that, even in species with large genome size and relatively low overall polymorphism, microsatellites can be successfully developed using next-generation sequencing technologies, provided that some additional precautions are taken compared to species lacking these characteristics.


Assuntos
Repetições de Dinucleotídeos , Larix/genética , Alelos , DNA de Plantas , Biblioteca Gênica , Variação Genética , Tamanho do Genoma , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo Genético , Análise de Sequência de DNA
20.
Mol Ecol ; 20(23): 4995-5011, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22059561

RESUMO

Studying geographic variation in the rate of hybridization between closely related species could provide a useful window on the evolution of reproductive isolation. Reinforcement theory predicts greater prezygotic isolation in areas of prolonged contact between recently diverged species than in areas of recent contact, which implies that old contact zones would be dominated by parental phenotypes with few hybrids (bimodal hybrid zones), whereas recent contact zones would be characterized by hybrid swarms (unimodal hybrid zones). Here, we investigate how the hybrid zones of two closely related Chinese oaks, Quercus mongolica and Q. liaotungensis, are structured geographically using both nuclear and chloroplast markers. We found that populations of Q. liaotungensis located around the Changbai Mountains in Northeast China, an inferred glacial refugium, were introgressed by genes from Q. mongolica, suggesting historical contact between the two species in this region. However, these introgressed populations form sharp bimodal hybrid zones with Q. mongolica. In contrast, populations of Q. liaotungensis located in North China, which show no sign of ancient introgression with Q. mongolica, form unimodal hybrid zones with Q. mongolica. These results are consistent with the hypothesis that selection against hybrids has had sufficient time to reinforce the reproductive barriers between Q. liaotungensis and Q. mongolica in Northeast China but not in North China.


Assuntos
Especiação Genética , Hibridização Genética , Filogeografia , Quercus/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , Núcleo Celular/genética , China , DNA de Cloroplastos/genética , DNA de Plantas/genética , Variação Genética , Genética Populacional , Haplótipos , Repetições de Microssatélites , Fenótipo , Isolamento Reprodutivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA