Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Epidemiol Prev ; 47(3): 32-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455630

RESUMO

OBJECTIVES: to provide evidence on how diet can influence health, greenhouse gas (GHG) emissions, and land use. DESIGN: cohort study. SETTING AND PARTICIPANTS: data collected in the EPIC Italy cohort (N. 47,749). MAIN OUTCOME MEASURES: hazard ratios (HR) for overall mortality and for cancer incidence in association with a sustainable diet (EAT-Lancet). RESULTS: sustainable diets are characterized by lower associated GHG emissions and lower land use (LU). Adherence to the guidelines proposed by the EAT-Lancet Commission was considered. This diet was associated with lower HRs for mortality and cancer incidence in EPIC Italy, estimated with Cox models accounting for potential confounders and stratified by sex. The hazard ratios for overall mortality showed a dose-response relationship with quartiles of diets associated with high GHG emissions, land use, and high distance from the EAT-Lancet diet calculated using a novel index, the EAT-Lancet distance index (EatDI). The HR for overall cancer incidence was also higher in the population with non-sustainable diets. CONCLUSIONS: the association among dietary GHG emissions, LU, and EatDI and overall mortality and overall cancer incidence suggests that promoting diets with low associated environmental impact can be an effective mitigation strategy with important co-benefits.


Assuntos
Gases de Efeito Estufa , Neoplasias , Humanos , Estudos de Coortes , Itália/epidemiologia , Dieta , Neoplasias/epidemiologia , Neoplasias/etiologia
2.
Sci Transl Med ; 14(657): eabo7604, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947675

RESUMO

Upon chronic antigen exposure, CD8+ T cells become exhausted, acquiring a dysfunctional state correlated with the inability to control infection or tumor progression. In contrast, stem-like CD8+ T progenitors maintain the ability to promote and sustain effective immunity. Adenovirus (Ad)-vectored vaccines encoding tumor neoantigens have been shown to eradicate large tumors when combined with anti-programmed cell death protein 1 (αPD-1) in murine models; however, the mechanisms and translational potential have not yet been elucidated. Here, we show that gorilla Ad vaccine targeting tumor neoepitopes enhances responses to αPD-1 therapy by improving immunogenicity and antitumor efficacy. Single-cell RNA sequencing demonstrated that the combination of Ad vaccine and αPD-1 increased the number of murine polyfunctional neoantigen-specific CD8+ T cells over αPD-1 monotherapy, with an accumulation of Tcf1+ stem-like progenitors in draining lymph nodes and effector CD8+ T cells in tumors. Combined T cell receptor (TCR) sequencing analysis highlighted a broader spectrum of neoantigen-specific CD8+ T cells upon vaccination compared to αPD-1 monotherapy. The translational relevance of these data is supported by results obtained in the first 12 patients with metastatic deficient mismatch repair (dMMR) tumors vaccinated with an Ad vaccine encoding shared neoantigens. Expansion and diversification of TCRs were observed in post-treatment biopsies of patients with clinical response, as well as an increase in tumor-infiltrating T cells with an effector memory signature. These findings indicate a promising mechanism to overcome resistance to PD-1 blockade by promoting immunogenicity and broadening the spectrum and magnitude of neoantigen-specific T cells infiltrating tumors.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Adenoviridae , Animais , Antígenos de Neoplasias/metabolismo , Humanos , Camundongos , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
3.
iScience ; 23(4): 101018, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32283524

RESUMO

Erythroid commitment and differentiation are regulated by the coordinated action of a host of transcription factors, including GATA2 and GATA1. Here, we explored GATA-mediated transcriptional regulation through the integrative analysis of gene expression, chromatin modifications, and GATA factors' binding in human multipotent hematopoietic stem/progenitor cells, early erythroid progenitors, and late precursors. A progressive loss of H3K27 acetylation and a diminished usage of active enhancers and super-enhancers were observed during erythroid commitment and differentiation. GATA factors mediate transcriptional changes through a stage-specific interplay with regulatory elements: GATA1 binds different sets of regulatory elements in erythroid progenitors and precursors and controls the transcription of distinct genes during commitment and differentiation. Importantly, our results highlight a pivotal role of promoters in determining the transcriptional program activated upon erythroid differentiation. Finally, we demonstrated that GATA1 binding to a stage-specific super-enhancer sustains the expression of the KIT receptor in human erythroid progenitors.

5.
Sci Rep ; 9(1): 6629, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036870

RESUMO

The cysteine-rich PLAC8 domain of unknown function occurs in proteins found in most Eukaryotes. PLAC8-proteins play important yet diverse roles in different organisms, such as control of cell proliferation in animals and plants or heavy metal resistance in plants and fungi. Mammalian Onzin can be either pro-proliferative or pro-apoptotic, depending on the cell type, whereas fungal FCR1 confers cadmium tolerance. Despite their different role in different organisms, we hypothesized common ancestral functions linked to the PLAC8 domain. To address this hypothesis, and to investigate the molecular function of the PLAC8 domain, murine Onzin and fungal FCR1 were expressed in the PLAC8-free yeast Saccharomyces cerevisiae. The two PLAC8-proteins localized in the nucleus and induced almost identical phenotypes and transcriptional changes when exposed to cadmium stress. Like FCR1, Onzin also reduced DNA damage and increased cadmium tolerance by a DUN1-dependent pathway. Both proteins activated transcription of ancient mitochondrial pathways such as leucine and Fe-S cluster biosynthesis, known to regulate cell proliferation and DNA repair in yeast. These results strongly suggest a common ancestral function of PLAC8 proteins and open new perspectives to understand the role of the PLAC8 domain in the cellular biology of Eukaryotes.


Assuntos
Cádmio/toxicidade , Núcleo Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Oncogênicas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Animais , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Dano ao DNA/genética , Reparo do DNA/genética , Camundongos , Proteínas Oncogênicas/genética , Proteínas/genética , Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29997211

RESUMO

Human immunodeficiency virus type 1 (HIV-1) displays the unique ability to infect nondividing cells. The capsid of HIV-1 is the viral determinant for viral nuclear import. To understand the cellular factors involved in the ability of HIV-1 to infect nondividing cells, we sought to find capsid mutations that allow the virus to infect dividing but not nondividing cells. Because the interaction of capsid with the nucleoporin protein 153 (Nup153) is important for nuclear import of HIV-1, we solved new crystal structures of hexameric HIV-1 capsid in complex with a Nup153-derived peptide containing a phenylalanine-glycine repeat (FG repeat), which we used to guide structure-based mutagenesis of the capsid-binding interface. HIV-1 viruses with mutations in these capsid residues were tested for their ability to infect dividing and nondividing cells. HIV-1 viruses with capsid N57 substitutions infected dividing but not nondividing cells. Interestingly, HIV-1 viruses with N57 mutations underwent reverse transcription but not nuclear translocation. The mutant capsids also lost the ability to interact with Nup153 and CPSF6. The use of small molecules PF74 and BI-2 prevented the interaction of FG-containing nucleoporins (Nups), such as Nup153, with the HIV-1 core. Analysis of integration sites in HIV-1 viruses with N57 mutations revealed diminished integration into transcriptionally active genes in a manner resembling that of HIV-1 in CPSF6 knockout cells or that of HIV-1-N74D. The integration pattern of the N57 mutant HIV-1 can be explained by loss of capsid interaction with CPSF6, whereas capsid interaction with Nup153 is required for HIV-1 to infect nondividing cells. Additionally, the observed viral integration profiles suggested that integration site selection is a multiparameter process that depends upon nuclear factors and the state of the cellular chromatin.IMPORTANCE One of the key advantages that distinguish lentiviruses, such as HIV-1, from all other retroviruses is its ability to infect nondividing cells. Interaction of the HIV-1 capsid with Nup153 and CPSF6 is important for nuclear entry and integration; however, the contribution of each of these proteins to nuclear import and integration is not clear. Using genetics, we demonstrated that these proteins contribute to different processes: Nup153 is essential for the HIV-1 nuclear import in nondividing cells, and CPSF6 is important for HIV-1 integration. In addition, nuclear factors such as CPSF6 and the state of the chromatin are known to be important for integration site selection; nevertheless, the preferential determinant influencing integration site selection is not known. This work demonstrates that integration site selection is a multiparameter process that depends upon nuclear factors and the state of the cellular chromatin.


Assuntos
Capsídeo/metabolismo , Divisão Celular , HIV-1/metabolismo , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular/genética , Linhagem Celular , Técnicas de Silenciamento de Genes , HIV-1/genética , Humanos , Poro Nuclear/genética , Poro Nuclear/virologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
7.
Stem Cell Reports ; 6(4): 618-632, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27050947

RESUMO

Human skin is maintained by the differentiation and maturation of interfollicular stem and progenitors cells. We used DeepCAGE, genome-wide profiling of histone modifications and retroviral integration analysis, to map transcripts, promoters, enhancers, and super-enhancers (SEs) in prospectively isolated keratinocytes and transit-amplifying progenitors, and retrospectively defined keratinocyte stem cells. We show that >95% of the active promoters are in common and differentially regulated in progenitors and differentiated keratinocytes, while approximately half of the enhancers and SEs are stage specific and account for most of the epigenetic changes occurring during differentiation. Transcription factor (TF) motif identification and correlation with TF binding site maps allowed the identification of TF circuitries acting on enhancers and SEs during differentiation. Overall, our study provides a broad, genome-wide description of chromatin dynamics and differential enhancer and promoter usage during epithelial differentiation, and describes a novel approach to identify active regulatory elements in rare stem cell populations.


Assuntos
Diferenciação Celular/genética , Epigênese Genética , Queratinócitos/metabolismo , Células-Tronco/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação/genética , Células Cultivadas , Elementos Facilitadores Genéticos/genética , Células Epidérmicas , Prepúcio do Pênis/citologia , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Redes Reguladoras de Genes , Histonas/metabolismo , Humanos , Queratinócitos/citologia , Masculino , Camundongos , Modelos Genéticos , Células NIH 3T3 , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia , Fatores de Transcrição/metabolismo
8.
Sci Rep ; 6: 24724, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27095295

RESUMO

Genome-wide approaches allow investigating the molecular circuitry wiring the genetic and epigenetic programs of human somatic stem cells. Hematopoietic stem/progenitor cells (HSPC) give rise to the different blood cell types; however, the molecular basis of human hematopoietic lineage commitment is poorly characterized. Here, we define the transcriptional and epigenetic profile of human HSPC and early myeloid and erythroid progenitors by a combination of Cap Analysis of Gene Expression (CAGE), ChIP-seq and Moloney leukemia virus (MLV) integration site mapping. Most promoters and transcripts were shared by HSPC and committed progenitors, while enhancers and super-enhancers consistently changed upon differentiation, indicating that lineage commitment is essentially regulated by enhancer elements. A significant fraction of CAGE promoters differentially expressed upon commitment were novel, harbored a chromatin enhancer signature, and may identify promoters and transcribed enhancers driving cell commitment. MLV-targeted genomic regions co-mapped with cell-specific active enhancers and super-enhancers. Expression analyses, together with an enhancer functional assay, indicate that MLV integration can be used to identify bona fide developmentally regulated enhancers. Overall, this study provides an overview of transcriptional and epigenetic changes associated to HSPC lineage commitment, and a novel signature for regulatory elements involved in cell identity.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Epigênese Genética , Regulação Viral da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Sequências Reguladoras de Ácido Nucleico , Retroviridae/genética , Transcriptoma , Sequência de Bases , Sequência Consenso , Elementos Facilitadores Genéticos , Células-Tronco Hematopoéticas/metabolismo , Histonas/metabolismo , Humanos , Células-Tronco Multipotentes/citologia , Especificidade de Órgãos , Matrizes de Pontuação de Posição Específica , Regiões Promotoras Genéticas , Iniciação da Transcrição Genética
9.
PLoS One ; 10(7): e0133705, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26207753

RESUMO

We report the genome sequence of Planobispora rosea ATCC 53733, a mycelium-forming soil-dweller belonging to one of the lesser studied genera of Actinobacteria and producing the thiopeptide GE2270. The P. rosea genome presents considerable convergence in gene organization and function with other members in the family Streptosporangiaceae, with a significant number (44%) of shared orthologs. Patterns of gene expression in P. rosea cultures during exponential and stationary phase have been analyzed using whole transcriptome shotgun sequencing and by proteome analysis. Among the differentially abundant proteins, those involved in protein metabolism are particularly represented, including the GE2270-insensitive EF-Tu. Two proteins from the pbt cluster, directing GE2270 biosynthesis, slightly increase their abundance values over time. While GE2270 production starts during the exponential phase, most pbt genes, as analyzed by qRT-PCR, are down-regulated. The exception is represented by pbtA, encoding the precursor peptide of the ribosomally synthesized GE2270, whose expression reached the highest level at the entry into stationary phase.


Assuntos
Actinomycetales/genética , Actinomycetales/metabolismo , Genoma Bacteriano , Peptídeos Cíclicos/biossíntese , Proteoma/análise , Transcriptoma , Actinomycetales/crescimento & desenvolvimento , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Genômica , Glucose/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas/genética , Família Multigênica , RNA Bacteriano/análise , Análise de Sequência de RNA , Tiazóis
10.
Sci Rep ; 5: 10469, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26020590

RESUMO

In bacteria, selective promoter recognition by RNA polymerase is achieved by its association with σ factors, accessory subunits able to direct RNA polymerase "core enzyme" (E) to different promoter sequences. Using Chromatin Immunoprecipitation-sequencing (ChIP-seq), we searched for promoters bound by the σ(S)-associated RNA polymerase form (Eσ(S)) during transition from exponential to stationary phase. We identified 63 binding sites for Eσ(S) overlapping known or putative promoters, often located upstream of genes (encoding either ORFs or non-coding RNAs) showing at least some degree of dependence on the σ(S)-encoding rpoS gene. Eσ(S) binding did not always correlate with an increase in transcription level, suggesting that, at some σ(S)-dependent promoters, Eσ(S) might remain poised in a pre-initiation state upon binding. A large fraction of Eσ(S)-binding sites corresponded to promoters recognized by RNA polymerase associated with σ(70) or other σ factors, suggesting a considerable overlap in promoter recognition between different forms of RNA polymerase. In particular, Eσ(S) appears to contribute significantly to transcription of genes encoding proteins involved in LPS biosynthesis and in cell surface composition. Finally, our results highlight a direct role of Eσ(S) in the regulation of non coding RNAs, such as OmrA/B, RyeA/B and SibC.


Assuntos
Escherichia coli/genética , Fator sigma/genética , Transcrição Gênica , Sítios de Ligação , Imunoprecipitação da Cromatina , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , RNA não Traduzido/genética
11.
PLoS One ; 10(5): e0126590, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25978676

RESUMO

Genome-wide mapping of transcriptional regulatory elements is an essential tool for understanding the molecular events orchestrating self-renewal, commitment and differentiation of stem cells. We combined high-throughput identification of transcription start sites with genome-wide profiling of histones modifications to map active promoters and enhancers in embryonic stem cells (ESCs) induced to neuroepithelial-like stem cells (NESCs). Our analysis showed that most promoters are active in both cell types while approximately half of the enhancers are cell-specific and account for most of the epigenetic changes occurring during neural induction, and most likely for the modulation of the promoters to generate cell-specific gene expression programs. Interestingly, the majority of the promoters activated or up-regulated during neural induction have a "bivalent" histone modification signature in ESCs, suggesting that developmentally-regulated promoters are already poised for transcription in ESCs, which are apparently pre-committed to neuroectodermal differentiation. Overall, our study provides a collection of differentially used enhancers, promoters, transcription starts sites, protein-coding and non-coding RNAs in human ESCs and ESC-derived NESCs, and a broad, genome-wide description of promoter and enhancer usage and of gene expression programs characterizing the transition from a pluripotent to a neural-restricted cell fate.


Assuntos
Elementos Facilitadores Genéticos/genética , Células-Tronco Embrionárias Humanas/citologia , Regiões Promotoras Genéticas/fisiologia , Diferenciação Celular/genética , Linhagem Celular , Mapeamento Cromossômico/métodos , Epigênese Genética/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Histonas/genética , Humanos , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , RNA não Traduzido/genética , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética , Regulação para Cima/genética
12.
RNA ; 20(12): 1963-76, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25336583

RESUMO

Modulation of mRNA translatability either by trans-acting factors (proteins or sRNAs) or by in cis-acting riboregulators is widespread in bacteria and controls relevant phenotypic traits. Unfortunately, global identification of post-transcriptionally regulated genes is complicated by poor structural and functional conservation of regulatory elements and by the limitations of proteomic approaches in protein quantification. We devised a genetic system for the identification of post-transcriptionally regulated genes and we applied this system to search for Pseudomonas aeruginosa RNA thermometers, a class of regulatory RNA that modulates gene translation in response to temperature changes. As P. aeruginosa is able to thrive in a broad range of environmental conditions, genes differentially expressed at 37 °C versus lower temperatures may be involved in infection and survival in the human host. We prepared a plasmid vector library with translational fusions of P. aeruginosa DNA fragments (PaDNA) inserted upstream of TIP2, a short peptide able to inactivate the Tet repressor (TetR) upon expression. The library was assayed in a streptomycin-resistant merodiploid rpsL(+)/rpsL31 Escherichia coli strain in which the dominant rpsL(+) allele, which confers streptomycin sensitivity, was repressed by TetR. PaDNA fragments conferring thermosensitive streptomycin resistance (i.e., expressing PaDNA-TIP2 fusions at 37°C, but not at 28°C) were sequenced. We identified four new putative thermosensors. Two of them were validated with conventional reporter systems in E. coli and P. aeruginosa. Interestingly, one regulates the expression of ptxS, a gene implicated in P. aeruginosa pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , RNA Bacteriano/biossíntese , RNA Mensageiro/biossíntese , Fatores de Transcrição/genética , Escherichia coli/genética , Resposta ao Choque Térmico/genética , Humanos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , RNA Bacteriano/genética , RNA Mensageiro/genética , Proteína S9 Ribossômica , Temperatura
13.
Microb Inform Exp ; 3(1): 1, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23294941

RESUMO

BACKGROUND: Next generation sequencing (NGS) technologies have revolutionized gene expression studies and functional genomics analysis. However, further improvement of RNA sequencing protocols is still desirable, in order to reduce NGS costs and to increase its accuracy. In bacteria, a major problem in RNA sequencing is the abundance of ribosomal RNA (rRNA), which accounts for 95-98% of total RNA and can therefore hinder sufficient coverage of mRNA, the main focus of transcriptomic studies. Thus, efficient removal of rRNA is necessary to achieve optimal coverage, good detection sensitivity and reliable results. An additional challenge is presented by microorganisms with GC-rich genomes, in which rRNA removal is less efficient. RESULTS: In this work, we tested two commercial kits for rRNA removal, either alone or in combination, on Burkholderia thailandensis. This bacterium, chosen as representative of the important Burkholderia genus, which includes both pathogenic and environmental bacteria, has a rather large (6.72 Mb) and GC-rich (67.7%) genome. Each enriched mRNA sample was sequenced through paired-end Illumina GAIIx run in duplicate, yielding between 10 and 40 million reads. We show that combined treatment with both kits allows an mRNA enrichment of more than 238-fold, enabling the sequencing of almost all (more than 90%) B. thailandensis transcripts from less than 10 million reads, without introducing any bias in mRNA relative abundance, thus preserving differential expression profile. CONCLUSIONS: The mRNA enrichment protocol presented in this work leads to an increase in detection sensitivity up to 770% compared to total RNA; such increased sensitivity allows for a corresponding reduction in the number of sequencing reads necessary for the complete analysis of whole transcriptome expression profiling. Thus we can conclude that the MICROBExpress/Ovation combined rRNA removal method could be suitable for RNA sequencing of whole transcriptomes of microorganisms with high GC content and complex genomes enabling at the same time an important scaling down of sequencing costs.

14.
ISME J ; 6(1): 136-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21866182

RESUMO

As obligate symbionts of most land plants, arbuscular mycorrhizal fungi (AMF) have a crucial role in ecosystems, but to date, in the absence of genomic data, their adaptive biology remains elusive. In addition, endobacteria are found in their cytoplasm, the role of which is unknown. In order to investigate the function of the Gram-negative Candidatus Glomeribacter gigasporarum, an endobacterium of the AMF Gigaspora margarita, we sequenced its genome, leading to an ∼1.72-Mb assembly. Phylogenetic analyses placed Ca. G. gigasporarum in the Burkholderiaceae whereas metabolic network analyses clustered it with insect endobacteria. This positioning of Ca. G. gigasporarum among different bacterial classes reveals that it has undergone convergent evolution to adapt itself to intracellular lifestyle. The genome annotation of this mycorrhizal-fungal endobacterium has revealed an unexpected genetic mosaic where typical determinants of symbiotic, pathogenic and free-living bacteria are integrated in a reduced genome. Ca. G. gigasporarum is an aerobic microbe that depends on its host for carbon, phosphorus and nitrogen supply; it also expresses type II and type III secretion systems and synthesizes vitamin B12, antibiotics- and toxin-resistance molecules, which may contribute to the fungal host's ecological fitness. Ca. G. gigasporarum has an extreme dependence on its host for nutrients and energy, whereas the fungal host is itself an obligate biotroph that relies on a photosynthetic plant. Our work represents the first step towards unraveling a complex network of interphylum interactions, which is expected to have a previously unrecognized ecological impact.


Assuntos
Burkholderiaceae/genética , Glomeromycota/metabolismo , Micorrizas/metabolismo , Microbiologia do Solo , Simbiose , Burkholderiaceae/metabolismo , Genoma Bacteriano , Redes e Vias Metabólicas , Filogenia , Plantas/microbiologia , Esporos Fúngicos/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA