Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bull Atmos Sci Technol ; 2(1-4): 8, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38624617

RESUMO

The present study discusses the effect of the ozone depletion that occurred over the Arctic in 2020 on the ozone column in central and southern Europe by analysing a data set obtained from ground-based measurements at six stations placed from 79 to 42°N. Over the northernmost site (Ny-Ålesund), the ozone column decreased by about 45% compared to the climatological average at the beginning of April, and its values returned to the normal levels at the end of the month. Southwards, the anomaly gradually reduced to nearly 15% at 42°N (Rome) and the ozone minimum was detected with a delay from about 6 days at 65°N to 20 days at 42°N. At the same time, the evolution of the ozone column at the considered stations placed below the polar circle corresponded to that observed at Ny-Ålesund, but at 42°-46°N, the ozone column turned back to the typical values at the end of May. This similarity in the ozone evolutional patterns at different latitudes and the gradually increasing delay of the minimum occurrences towards the south allows the assumption that the ozone columns at lower latitudes were affected by the phenomenon in the Arctic. The ozone decrease observed at Aosta (46°N) combined with predominantly cloud-free conditions resulted in about an 18% increase in the erythemally weighted solar ultraviolet irradiance reaching the Earth's surface in May.

2.
Photochem Photobiol Sci ; 16(9): 1349-1370, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28848959

RESUMO

The UV Index was established more than 20 years ago as a tool for sun protection and health care. Shortly after its introduction, UV Index monitoring started in several countries either by newly acquired instruments or by converting measurements from existing instruments into the UV Index. The number of stations and networks has increased over the years. Currently, 160 stations in 25 European countries deliver online values to the public via the Internet. In this paper an overview of these UV Index monitoring sites in Europe is given. The overview includes instruments as well as quality assurance and quality control procedures. Furthermore, some examples are given about how UV Index values are presented to the public. Through these efforts, 57% of the European population is supplied with high quality information, enabling them to adapt behaviour. Although health care, including skin cancer prevention, is cost-effective, a proportion of the European population still doesn't have access to UV Index information.

3.
Int J Biometeorol ; 58(1): 31-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23299392

RESUMO

Variations in total ozone column and sun exposures able to cause erythema and damage the DNA molecules were observed by the narrow-band filter radiometer UV-RAD in Bologna, Italy from 2005 to 2010. The ozone columns determined from the UV-RAD measurements were found to be close to those provided by the satellite Ozone Monitoring Instrument (OMI) showing an average discrepancy of 1% with standard deviation of ± 6%. Analysis of the data highlights a well-marked annual cycle of the ozone column variations while the oscillations with periods of 8, 18 and 34 months present much smaller amplitudes. The influence of the frequency of solar irradiance measurements on the accuracy of the evaluated daily exposure dose has been studied and it was found that time intervals no longer than 5-10 min between the measurements of erythema and DNA damage effective UV irradiances provide a satisfactory assessment of the corresponding daily exposures. The latter do not present significant year-to-year variations for the period under study, while their annual distributions show slight changes likely due to the specific cloud cover and ozone column variability for different years. The annual erythemal exposure dose for 2007-2010 varied between 603.7 and 638.1 kJ m(-2), while the corresponding sun exposure affecting DNA changed from 6.38 to 7.91 kJ m(-2).


Assuntos
Modelos Teóricos , Ozônio/análise , Doses de Radiação , Raios Ultravioleta , Dano ao DNA , Itália
4.
Radiat Environ Biophys ; 50(1): 219-29, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20878331

RESUMO

An approach is proposed to assess the periods of human skin exposure to solar ultraviolet-A (UV-A, 315-400 nm) irradiance in natural conditions that are able to yield doses found to trigger carcinogenesis in laboratory experiments. Weighting functions, adopted to perform such estimate are constructed, allowing for a comparison between environmental and laboratory doses. Furthermore, the impact of stratum corneum (SC) thickness on the studied environmental doses was investigated. Based on laboratory studies, it was found that exposure periods of less than a month, at mid-latitudes, could provide irradiance doses capable of causing tumor formation. The duration of these exposure periods closely depends on the exposure regime, atmospheric conditions and SC thickness. It is believed that the presented evaluations could provide a useful preliminary estimation of the risk associated with environmental UV-A exposure prior to the formulation of the corresponding action spectra and determination of the threshold doses.


Assuntos
Exposição Ambiental/efeitos adversos , Raios Ultravioleta/efeitos adversos , Linhagem Celular Tumoral , Humanos , Laboratórios , Neoplasias Induzidas por Radiação , Doses de Radiação , Medição de Risco , Pele/efeitos da radiação , Fatores de Tempo
5.
Photochem Photobiol Sci ; 9(3): 384-91, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20221466

RESUMO

The first Arctic intercomparison of three solar ultraviolet (UV) spectroradiometers and two multifilter radiometers was held in May and June 2009 at Ny-Alesund, Svalbard, Norway. The transportable reference spectroradiometer QASUME acted as reference instrument for this intercomparison. The measurement period extended over eleven days, comprising clear sky and overcast weather conditions. Due to the high latitude, measurements could be performed throughout the day during this period. The intercomparison demonstrated that the solar UV measurements from all instruments agreed to within +/-15% during the whole measurement period, while the spectroradiometer from the Alfred-Wegener Institute agreed to better than +/-5%. This intercomparison has demonstrated that solar UV measurements can be performed reliably in the high-latitude Arctic environment with uncertainties comparable to mid-latitude sites.


Assuntos
Luz Solar , Raios Ultravioleta , Regiões Árticas , Radiometria
6.
Appl Opt ; 45(18): 4383-95, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16778947

RESUMO

The ultraviolet narrowband filter radiometer (UV-RAD) designed by the authors to take ground-based measurements of UV solar irradiance, total ozone, and biological dose rate is described, together with the main characteristics of the seven blocked filters mounted on it, all of which have full widths at half maxima that range 0.67 to 0.98 nm. We have analyzed the causes of cosine response and calibration errors carefully to define the corresponding correction terms, paying particular attention to those that are due to the spectral displacements of the filter transmittance peaks from the integer wavelength values. The influence of the ozone profile on the retrieved ozone at large solar zenith angles has also been examined by means of field measurements. The opportunity of carrying out nearly monochromatic irradiance measurements offered by the UV-RAD allowed us to improve the procedure usually followed to reconstruct the solar spectrum at the surface by fitting the computed results, using radiative transfer models with field measurements of irradiance. Two long-term comparison campaigns took place, showing that a mean discrepancy of +0.3% exists between the UV-RAD total ozone values and those given by the Brewer #63 spectroradiometer and that mean differences of +0.3% and -0.9% exist between the erythemal dose rates determined with the UV-RAD and those obtained with the Brewer #63 and the Brewer #104 spectroradiometers, respectively.

7.
Appl Opt ; 44(16): 3320-41, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15943269

RESUMO

Precise calculations of the total Rayleigh-scattering optical depth have been performed at 88 wavelengths ranging from 0.20 to 4.00 microm for the six well-known standard atmosphere models by integrating the volume Rayleigh-scattering coefficient along the vertical atmospheric path from sea level to a 120-km height. The coefficient was determined by use of an improved algorithm based on the Ciddor algorithm [Appl. Opt. 35, 1566 (1996)], extended by us over the 0.20-0.23-microm wavelength range to evaluate the moist air refractive index as a function of wavelength, air pressure, temperature, water-vapor partial pressure, and CO2 volume concentration. The King depolarization factor was also defined taking into account the moisture conditions of air. The results indicate that the influence of water vapor on Rayleigh scattering cannot be neglected at tropospheric altitudes: for standard atmospheric conditions represented in terms of the U.S. Standard Atmosphere (1976) model, the relative variations produced by water vapor in the Rayleigh scattering parameters at a 0.50-microm wavelength turn out to be equal to -0.10% in the moist air refractivity at sea level (where the water-vapor partial pressure is equal to approximately 7.8 hPa), -0.04% in the sea-level King factor, -0.24% in the sea-level Rayleigh-scattering cross section, and -0.06% in the Rayleigh-scattering optical depth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA