RESUMO
The Apolipoprotein E (APOE) genotype has been shown to be the strongest genetic risk factor for Alzheimer's disease (AD). Moreover, both the lipolysis-stimulated lipoprotein receptor (LSR) and the vascular endothelial growth factor A (VEGF-A) are involved in the development of AD. The aim of the study was to develop a prediction model for AD including single nucleotide polymorphisms (SNP) of APOE, LSR and VEGF-A-related variants. The population consisted of 323 individuals (143 AD cases and 180 controls). Genotyping was performed for: the APOE common polymorphism (rs429358 and rs7412), two LSR variants (rs34259399 and rs916147) and 10 VEGF-A-related SNPs (rs6921438, rs7043199, rs6993770, rs2375981, rs34528081, rs4782371, rs2639990, rs10761741, rs114694170, rs1740073), previously identified as genetic determinants of VEGF-A levels in GWAS studies. The prediction model included direct and epistatic interaction effects, age and sex and was developed using the elastic net machine learning methodology. An optimal model including the direct effect of the APOE e4 allele, age and eight epistatic interactions between APOE and LSR, APOE and VEGF-A-related variants was developed with an accuracy of 72%. Two epistatic interactions (rs7043199*rs6993770 and rs2375981*rs34528081) were the strongest protective factors against AD together with the absence of ε4 APOE allele. Based on pathway analysis, the involved variants and related genes are implicated in neurological diseases. In conclusion, this study demonstrated links between APOE, LSR and VEGF-A-related variants and the development of AD and proposed a model of nine genetic variants which appears to strongly influence the risk for AD.
Assuntos
Doença de Alzheimer , Fator A de Crescimento do Endotélio Vascular , Alelos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Apolipoproteínas E/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
Telomere length (TL) is a hallmark of cellular aging and is associated with chronic diseases development. The vascular endothelial growth factor A (VEGF-A), a potent angiogenesis factor, is implicated in the pathophysiology of many chronic diseases. The aim of the present study was to investigate the associations between VEGF-A and TL. TL in leukocytes (LTL) and skeletal muscle (MTL) were measured, 10 VEGF-related polymorphisms genotyped, and VEGF-A plasma concentrations determined in 402 individuals from the TELARTA cohort. LTL/MTL ratio was calculated as an estimate of lifelong TL attrition. Associations between VEGF-A variants and levels, and TL parameters were investigated. We identified one significant association between the minor allele (T) of rs6993770 variant and LTL/MTL ratio (P=0.001143, ß=0.0148, SE=0.004516). The rs6993770 is an intronic variant of the ZFPM2 gene, which is involved in haematopoiesis and the identified association with increased telomere attrition could be due to increased haematopoiesis. No significant epistatic interaction was identified, and no association was found between levels of VEGF-A and any of assessed phenotypes. We identified a potential common genetic regulation between VEGF-A and telomere length attrition that could be explained by mechanisms of increased hematopoiesis and production of platelets. VEGF-A and TL could play an important role in personalized medicine of chronic diseases and identification of molecular links between them can promote the understanding of their complex implications.
Assuntos
Encurtamento do Telômero/genética , Telômero/genética , Fator A de Crescimento do Endotélio Vascular/genética , Hematopoese/genética , Humanos , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10-11), HLA-DRB1/DRB5 rs660895 on Chr6p21 (Pcombined = 1.5 × 10-10) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10-122). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
Assuntos
Estudo de Associação Genômica Ampla , Cadeias HLA-DRB1/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Interleucina-1/genética , Interleucina-6/genética , Receptores de Interleucina-6/genética , Estudos de Coortes , Regulação da Expressão Gênica , Loci Gênicos , Predisposição Genética para Doença , Humanos , Interleucina-6/sangue , Polimorfismo de Nucleotídeo Único , População Branca/genéticaRESUMO
Short leukocyte telomere length (LTL) is associated with atherosclerotic cardiovascular disease (ASCVD). Mendelian randomisation studies, using single nucleotide polymorphisms (SNPs) associated with short LTL, infer a causal role of LTL in ASCVD. Recent results, using the blood-and-muscle model, indicate that higher early life LTL attrition, as estimated by the ratio between LTL and skeletal muscle telomere length (MTL), rather than short LTL at conception, as estimated by MTL, should be responsible of the ASCVD-LTL connection. We combined LTL and MTL measurements and SNPs profiling in 402 individuals to determine if 15 SNPs classically described as associated with short LTL at adult age were rather responsible for higher LTL attrition during early life than for shorter LTL at birth. Two of these SNPs (rs12696304 and rs10936599) were associated with LTL in our cohort (p = 0.027 and p = 0.025, respectively). These SNPs, both located on the TERC gene, were associated with the LTL/MTL ratio (p = 0.007 and p = 0.037, respectively), but not with MTL (p = 0.78 and p = 0.32 respectively). These results suggest that SNPs located on genes coding for telomere maintenance proteins may contribute to a higher LTL attrition during the highly replicative first years of life and have an impact later on the development of ASCVD.
Assuntos
Variação Genética , Leucócitos/metabolismo , Músculos/metabolismo , RNA/genética , Telomerase/genética , Encurtamento do Telômero/genética , Telômero/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Homeostase do Telômero , Adulto JovemRESUMO
Telomere length (TL) is a dynamic marker that reflects genetic predispositions together with the environmental conditions of an individual. It is closely related to longevity and a number of pathological conditions. Even though the extent of telomere research in children is limited compared to that of adults, there have been a substantial number of studies providing first insights into child telomere biology and determinants. Recent discoveries revealed evidence that TL is, to a great extent, determined already in childhood and that environmental conditions in adulthood have less impact than first believed. Studies have demonstrated that large inter-individual differences in TL are present among newborns and are determined by diverse factors that influence intrauterine development. The first years of child growth are associated with high cellular turnover, which results in fast shortening of telomeres. The rate of telomere loss becomes stable in early adulthood. In this review article we summarise the existing knowledge on telomere dynamics during the first years of childhood, highlighting the conditions that affect newborn TL. We also warn about the knowledge gaps that should be filled to fully understand the regulation of telomeres, in order to implement them as biomarkers for use in diagnostics or treatment.
Assuntos
Encurtamento do Telômero , Telômero/fisiologia , Biomarcadores/metabolismo , Criança , Variação Genética , Humanos , Recém-Nascido , Neoplasias/genética , Neoplasias/patologia , Fatores de Risco , Estresse PsicológicoRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0220902.].
RESUMO
BACKGROUND: Vascular endothelial growth factor (VEGF) is a signal protein, implicated in various physiological and pathophysiological processes together with other common inflammatory biomarkers. However, their associations have not yet been fully elucidated. In the present study, we investigated associations between VEGF and four specific VEGF mRNA isoforms with levels of 11 inflammation molecules, derived from peripheral blood mononuclear cells (PBMCs) extracts. METHODS: Healthy participants from the STANISLAS Family Study (n = 285) were included. Levels of VEGF (four mRNA isoforms and protein levels) and inflammatory molecules (IL-1α, IL-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, INF-γ, TNF-α, MCP-1, EGF) were measured in PBMCs extracts. Multiple regression analyses were performed, adjusted for age and gender. RESULTS: The analyses revealed significant associations between VEGF protein levels and levels of IL-4 (ß = 0.028, P = 0.013), MCP-1 (ß = 0.015, P<0.0001) and EGF (ß = 0.017, P<0.0001). Furthermore, mRNA isoform VEGF165 was associated with MCP-1 and IL-1α (P = 0.002 and P = 0.008, respectively); and mRNA isoform VEGF189 was associated with IL-4 and IL-6 (P = 0.019 and P = 0.034, respectively). CONCLUSIONS: To our knowledge, the present study represents the first investigation that successfully demonstrates links between VEGF protein levels and inflammatory molecules levels derived from PBMCs extracts and identifies associations between specific VEGF mRNA isoforms and inflammatory molecules. IMPACT: These findings provide novel insights that may assist in the development of new tissue and mRNA isoform specific measurements of VEGF levels, which may positively contribute to predicting the risk of common complex diseases and response of currently used anti-VEGF agents, and developing of novel targeted therapies for VEGF-related pathophysiology.
Assuntos
Inflamação/imunologia , Leucócitos Mononucleares/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Adulto , Células Cultivadas , Quimiocina CCL2/análise , Quimiocina CCL2/imunologia , Feminino , Humanos , Inflamação/genética , Interleucinas/análise , Interleucinas/imunologia , Leucócitos Mononucleares/química , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/análise , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/imunologia , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
The 9th traditional biannual conference on Systems Medicine, Personalised Health & Therapy-"The Odyssey from Hope to Practice", inspired by the Greek mythology, was a call to search for practical solutions in cardio-metabolic diseases and cancer, to resolve and overcome the obstacles in modern medicine by creating more interactions among disciplines, as well as between academic and industrial research, directed towards an effective 'roadmap' for personalised health and therapy. The 9th Santorini Conference, under the Presidency of Sofia Siest, the director of the INSERM U1122; IGE-PCV (www.u1122.inserm.fr), University of Lorraine, France, offered a rich and innovative scientific program. It gathered 34 worldwide distinguished speakers, who shared their passion for personalised medicine with 160 attendees in nine specific sessions on the following topics: First day: The Odyssey from hope to practice: Personalised medicine-landmarks and challenges Second day: Diseases to therapeutics-genotype to phenotype an "-OMICS" approach: focus on personalised therapy and precision medicine Third day: Gene-environment interactions and pharmacovigilance: a pharmacogenetics approach for deciphering disease "bench to clinic to reality" Fourth day: Pharmacogenomics to drug discovery: a big data approach and focus on clinical data and clinical practice. In this article we present the topics shared among the participants of the conference and we highlight the key messages.
RESUMO
BACKGROUND: Telomere length is associated with a large range of human diseases. Genome-wide association studies (GWAS) have identified genetic variants that are associated with leucocyte telomere length (LTL). However, these studies are limited to adult populations. Nevertheless, childhood is a crucial period for the determination of LTL, and the assessment of age-specific genetic determinants, although neglected, could be of great importance. Our aim was to provide insights and preliminary results on genetic determinants of LTL in children. METHODS: Healthy children (n = 322, age range = 6.75-17 years) with available GWAS data (Illumina Human CNV370-Duo array) were included. The LTL was measured using multiplex quantitative real-time polymerase chain reaction. Linear regression models adjusted for age, gender, parental age at child's birth, and body mass index were used to test the associations of LTL with polymorphisms identified in adult GWAS and to perform a discovery-only GWAS. RESULTS: The previously GWAS-identified variants in adults were not associated with LTL in our paediatric sample. This lack of association was not due to possible interactions with age or gene × gene interactions. Furthermore, a discovery-only GWAS approach demonstrated six novel variants that reached the level of suggestive association (P ≤ 5 × 10(-5)) and explain a high percentage of children's LTL. CONCLUSIONS: The study of genetic determinants of LTL in children may identify novel variants not previously identified in adults. Studies in large-scale children populations are needed for the confirmation of these results, possibly through a childhood consortium that could better handle the methodological challenges of LTL genetic epidemiology field.