Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(32)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38977300

RESUMO

Activity of central amygdala (CeA) PKCδ expressing neurons has been linked to appetite regulation, anxiety-like behaviors, pain sensitivity, and addiction-related behaviors. Studies of the role that CeA PKCδ+ neurons play in these behaviors have largely been carried out in mice, and genetic tools that would allow selective manipulation of PKCδ+ cells in rats have been lacking. Here, we used a CRISPR/Cas9 strategy to generate a transgenic Prkcd-cre knock-in rat and characterized this model using anatomical, electrophysiological, and behavioral approaches in both sexes. In the CeA, Cre was selectively expressed in PKCδ+ cells. Anterograde projections of PKCδ+ neurons to cortical regions, subcortical regions, several hypothalamic nuclei, the amygdala complex, and midbrain dopaminergic regions were largely consistent with published mouse data. In a behavioral screen, we found no differences between Cre+ rats and Cre- wild-type littermates. Optogenetic stimulation of CeA PKCδ+ neurons in a palatable food intake assay resulted in an increased latency to first feeding and decreased total food intake, once again replicating published mouse findings. Lastly, using a real-time place preference task, we found that stimulation of PKCδ+ neurons promoted aversion, without affecting locomotor activity. Collectively, these findings establish the novel Prkcd-Cre rat line as a valuable tool that complements available mouse lines for investigating the functional role of PKCδ+ neurons.


Assuntos
Proteína Quinase C-delta , Animais , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Ratos , Masculino , Feminino , Ratos Transgênicos , Neurônios/fisiologia , Núcleo Central da Amígdala/fisiologia , Integrases/genética , Optogenética/métodos , Ratos Sprague-Dawley
2.
Artigo em Inglês | MEDLINE | ID: mdl-38755284

RESUMO

The transition to alcohol use disorder (AUD) involves persistent neuroadaptations in executive control functions primarily regulated by the medial prefrontal cortex. However, the neurophysiological correlates to behavioral manifestations of AUD are not fully defined. The association between cortical neuroadaptations and behavioral manifestations of addiction was studied using a multi-symptomatic operant model based on the DSM-5 diagnostic criteria for AUD. This model aimed to characterize an AUD-vulnerable and AUD-resistant subpopulation of outbred male Wistar rats and was combined with electrophysiological measurements in the prelimbic cortex (PL). Mirroring clinical observations, rats exhibited individual variability in their vulnerability to develop AUD-like behavior, including motivation to seek for alcohol (crit 1), increased effort to obtain the substance (crit 2), and continued drinking despite negative consequences (crit 3). Only a small subset of rats met all the aforementioned AUD criteria (3 crit, AUD-vulnerable), while a larger fraction was considered AUD-resilient (0 crit). The development of AUD-like behavior was characterized by disruptions in glutamatergic synaptic activity, involving decreased frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and heightened intrinsic excitability in layers 2/3 PL pyramidal neurons. These alterations were concomitant with a significant impairment in the ability of mGlu2/3 receptors to negatively regulate glutamate release in the PL but not in downstream regions like the basolateral amygdala or nucleus accumbens core. In conclusion alterations in PL synaptic activity were strongly associated with individual addiction scores, indicating their role as potential markers of the behavioral manifestations linked to AUD psychopathology.

4.
Neuropharmacology ; 248: 109866, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364970

RESUMO

The Nociceptin/Orphanin FQ (N/OFQ) peptide and its receptor NOP are highly expressed within several regions of the mesolimbic system, including the ventral tegmental area (VTA). Evidence indicates that the N/OFQ-NOP receptor system is involved in reward processing and historically it has been proposed that activation of NOP receptors attenuates the motivation for substances of abuse. However, recent findings demonstrated that drug self-administration and relapse to drug-seeking are also attenuated after administration of NOP receptor antagonists. Here, to shed light on the mechanisms through which NOP receptor blockers modulate these processes, we utilized ex vivo patch-clamp recordings to investigate the effect of the selective NOP receptor antagonist LY2817412 on VTA dopaminergic (DA) function in male rats. Results showed that, similar to the endogenous NOP receptor agonist N/OFQ, LY2817412 reduced the spontaneous basal firing discharge of VTA DA neurons. Consistently, we found that NOP receptors are expressed both in VTA DA and GABA cells and that LY2817412 slice perfusion increased GABA release onto VTA DA cells. Finally, in the attempt to dissect the role of postsynaptic and presynaptic NOP receptors, we tested the effect of N/OFQ and LY2817412 in the presence of GABA receptors blockers. Results showed that the effect of LY2817412 was abolished following pretreatment with GABABR, but not GABAAR, blockers. Conversely, inhibition of DA neuronal activity by N/OFQ was unaffected by blockade of GABA receptors. Altogether, these results suggest that both NOP receptor agonists and antagonists can decrease VTA DA neuronal activity, but through distinct mechanisms of action. The effect of NOP receptor antagonists occurs through a GABABR-mediated mechanism while NOP receptor agonists seem to act via a direct effect on VTA DA neurons.


Assuntos
Dopamina , Receptores Opioides , Ratos , Masculino , Animais , Receptores Opioides/metabolismo , Área Tegmentar Ventral/metabolismo , Receptor de Nociceptina , Receptores de GABA-B , Nociceptina , Neurônios Dopaminérgicos/metabolismo , Ácido gama-Aminobutírico , Peptídeos Opioides/farmacologia
5.
Neuropsychopharmacology ; 48(9): 1386-1395, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36739350

RESUMO

Alcohol use despite negative consequences is a core phenomenon of alcohol addiction. We recently used alcohol self-administration that is resistant to footshock punishment as a model of this behavior, and found that activity of PKCδ + GABAergic neurons in the central amygdala (CeA) is a determinant of individual susceptibility for punishment resistance. In the present study, we examined whether activation of GABAB receptors in CeA can attenuate the activity of PKCδ + neurons in this region, and whether this will result in suppression of punishment- resistant alcohol self-administration in the minority of rats that show this behavior. Systemic administration of the clinically approved GABAB agonist baclofen (1 and 3 mg/kg) dose- dependently reduced punishment-resistant alcohol self-administration. Bilateral microinjections of baclofen into CeA (64 ng in 0.3 µl/side) reduced the activity of PKCδ + neurons, as measured by Fos expression. This manipulation also selectively suppressed punished alcohol self-administration in punishment-resistant rats. Expression analysis indicated that virtually all CeA PKCδ + neurons express the GABAB receptor. Using in vitro electrophysiology, we found that baclofen induced hyperpolarization of CeA neurons, reducing their firing rate in response to depolarizing current injections. Together, our findings provide a potential mechanism that contributes to the clinical efficacy of baclofen in alcohol addiction. Therapeutic use of baclofen itself is limited by problems of tolerance and need for dose escalation. Our findings support a mechanistic rationale for developing novel, improved alcohol addiction medications that target GABAB receptors, and that lack these limitations, such as e.g., GABAB positive allosteric modulators (PAM:s).


Assuntos
Alcoolismo , Núcleo Central da Amígdala , Ratos , Animais , Baclofeno , Alcoolismo/tratamento farmacológico , Punição , Núcleo Central da Amígdala/metabolismo , Receptores de GABA-B/metabolismo , Etanol , Neurônios/metabolismo , Agonistas dos Receptores de GABA-B/farmacologia , Agonistas dos Receptores de GABA-B/uso terapêutico
6.
Neuropharmacology ; 222: 109301, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336069

RESUMO

The repeated maternal separation (RMS) is a useful experimental model useful in rodents to study the long-term influence of early-life stress on brain neurophysiology. We here investigated the influence of RMS exposure on hippocampal inhibitory and excitatory synaptic transmission, long-term synaptic plasticity and the related potential alterations in learning and memory performance in adult male and female C57Bl/6J mice. Mice were separated daily from their dam for 360 min, from postnatal day 2 (PND2) to PND17, and experiments were performed at PND 60. Patch-clamp recordings in hippocampal CA1 pyramidal neurons revealed a significant enhancement of GABAergic miniature IPSC (mIPSC) frequency, and a decrease in the amplitude of glutamatergic mEPSCs in male mice exposed to RMS. Only a slight but significant reduction in the amplitude of GABAergic mIPSCs was observed in females exposed to RMS compared to the relative controls. A marked increase in long-term depression (LTD) at CA3-CA1 glutamatergic synapses and in the response to the CB1r agonist win55,212 were detected in RMS male, but not female mice. An impaired spatial memory and a reduced preference for novelty was observed in males exposed to RMS but not in females. A single injection of ß-ethynyl estradiol at PND2, prevented the changes observed in RMS male mice, suggesting that estrogens may play a protective role early in life against the exposure to stressful conditions. Our findings strengthen the idea of a sex-dependent influence of RMS on long-lasting modifications in synaptic transmission, effects that may be relevant for cognitive performance.


Assuntos
Privação Materna , Plasticidade Neuronal , Masculino , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Hipocampo , Memória Espacial , Transtornos da Memória , Cognição , Estradiol
8.
Mol Psychiatry ; 27(12): 4893-4904, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36127428

RESUMO

Excessive fear is a hallmark of anxiety disorders, a major cause of disease burden worldwide. Substantial evidence supports a role of prefrontal cortex-amygdala circuits in the regulation of fear and anxiety, but the molecular mechanisms that regulate their activity remain poorly understood. Here, we show that downregulation of the histone methyltransferase PRDM2 in the dorsomedial prefrontal cortex enhances fear expression by modulating fear memory consolidation. We further show that Prdm2 knock-down (KD) in neurons that project from the dorsomedial prefrontal cortex to the basolateral amygdala (dmPFC-BLA) promotes increased fear expression. Prdm2 KD in the dmPFC-BLA circuit also resulted in increased expression of genes involved in synaptogenesis, suggesting that Prdm2 KD modulates consolidation of conditioned fear by modifying synaptic strength at dmPFC-BLA projection targets. Consistent with an enhanced synaptic efficacy, we found that dmPFC Prdm2 KD increased glutamatergic release probability in the BLA and increased the activity of BLA neurons in response to fear-associated cues. Together, our findings provide a new molecular mechanism for excessive fear responses, wherein PRDM2 modulates the dmPFC -BLA circuit through specific transcriptomic changes.


Assuntos
Tonsila do Cerebelo , Complexo Nuclear Basolateral da Amígdala , Tonsila do Cerebelo/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Córtex Pré-Frontal/metabolismo , Medo/fisiologia , Epigênese Genética
9.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35890099

RESUMO

The neuropeptide S (NPS) is the endogenous ligand of the NPS receptor (NPSR). The NPSR is widely expressed in brain regions that process emotional and affective behavior. NPS possesses a unique physio-pharmacological profile, being anxiolytic and promoting arousal at the same time. Intracerebroventricular NPS decreased alcohol consumption in alcohol-preferring rats with no effect in non-preferring control animals. This outcome is most probably linked to the anxiolytic properties of NPS, since alcohol preference is often associated with high levels of basal anxiety and intense stress-reactivity. In addition, NPSR mRNA was overexpressed during ethanol withdrawal and the anxiolytic-like effects of NPS were increased in rodents with a history of alcohol dependence. In line with these preclinical findings, a polymorphism of the NPSR gene was associated with anxiety traits contributing to alcohol use disorders in humans. NPS also potentiated the reinstatement of cocaine and ethanol seeking induced by drug-paired environmental stimuli and the blockade of NPSR reduced reinstatement of cocaine-seeking. Altogether, the work conducted so far indicates the NPS/NPSR system as a potential target to develop new treatments for alcohol and cocaine abuse. An NPSR agonist would be indicated to help individuals to quit alcohol consumption and to alleviate withdrawal syndrome, while NPSR antagonists would be indicated to prevent relapse to alcohol- and cocaine-seeking behavior.

10.
Br J Pharmacol ; 179(11): 2647-2658, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34854073

RESUMO

BACKGROUND AND PURPOSE: The nociceptin/orphanin FQ (N/OFQ)-nociceptin opioid-like peptide (NOP) receptor system is widely distributed in the brain and pharmacological activation of this system revealed therapeutic potential in animal models of substance use disorder. Studies also showed that genetic deletion or pharmacological blockade of NOP receptors confer resistance to the development of alcohol abuse. Here, we have used a genetic and pharmacological approach to evaluate the therapeutic potential of NOP antagonism in smoking cessation. EXPERIMENTAL APPROACH: Constitutive NOP receptor knockout rats (NOP-/- ) and their wild-type counterparts (NOP+/+ ) were tested over a range of behaviours to characterize their motivation for nicotine. We next explored the effects of systemic administration of the NOP receptor antagonist LY2817412 (1.0 & 3.0 mg·kg-1 ) on nicotine self-administration. NOP receptor blockade was further evaluated at the brain circuitry level, by microinjecting LY2817412 (3.0 & 6.0 µg·µl-1 ) into the ventral tegmental area (VTA), nucleus accumbens (NAc) and central amygdala (CeA). KEY RESULTS: Genetic NOP receptor deletion resulted in decreased nicotine intake, decreased motivation to self-administer and attenuation of cue-induced nicotine reinstatement. LY2817412 reduced nicotine intake in NOP+/+ but not in NOP-/- rats, confirming that its effect is mediated by inhibition of NOP transmission. Finally, injection of LY2817412 into the VTA but not into the NAc or CeA decreased nicotine self-administration. CONCLUSIONS AND IMPLICATIONS: These findings indicate that inhibition of NOP transmission attenuates the motivation for nicotine through mechanisms involving the VTA and suggest that NOP receptor antagonism may represent a potential treatment for smoking cessation.


Assuntos
Nicotina , Área Tegmentar Ventral , Animais , Nicotina/farmacologia , Peptídeos Opioides/metabolismo , Ratos , Receptores Opioides , Área Tegmentar Ventral/metabolismo , Receptor de Nociceptina , Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA