Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Nanoscale Adv ; 6(18): 4572-4582, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39263406

RESUMO

Macrophages play a pivotal role in the internalization and processing of administered nanoparticles (NPs). Furthermore, the phagocytic capacity and immunological properties of macrophages can vary depending on their microenvironment, exhibiting a spectrum of polarization states ranging from pro-inflammatory M1 to anti-inflammatory M2. However, previous research investigating this phenotype-dependent interaction with NPs has predominantly relied on semi-quantitative techniques or conventional metrics to assess intracellular NPs. Here, we focus on the interaction of human monocyte-derived macrophage phenotypes (M1-like and M2-like) with gold NPs (AuNPs) by combining population-based metrics and single-cell analysis by focused ion beam-scanning electron microscopy (FIB-SEM). The multimodal analysis revealed phenotype-dependent response and uptake behavior differences, becoming more pronounced after 48 hours. The study also highlighted phenotype-dependent cell-to-cell heterogeneity in AuNPs uptake and variability in particle number at the single-cell level, which was particularly evident in M2-like macrophages, which increases with time, indicating enhanced heteroscedasticity. Future efforts to design NPs targeting macrophages should consider the phenotypic variations and the distribution of NPs concentrations within a population, including the influence of cell-to-cell heterogeneity. This comprehensive understanding will be critical in developing safe and effective NPs to target different macrophage phenotypes.

2.
Cells ; 13(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39273038

RESUMO

Antimony-doped tin oxide nanoparticles (ATO NPs) have emerged as a promising tool in biomedical applications, namely robust photothermal effects upon near-infrared (NIR) light exposure, enabling controlled thermal dynamics to induce spatial cell death. This study investigated the interplay between ATO NPs and macrophages, understanding cellular uptake and cytokine release. ATO NPs demonstrated biocompatibility with no impact on macrophage viability and cytokine secretion. These findings highlight the potential of ATO NPs for inducing targeted cell death in cancer treatments, leveraging their feasibility, unique NIR properties, and safe interactions with immune cells. ATO NPs offer a transformative platform with significant potential for future biomedical applications by combining photothermal capabilities and biocompatibility.


Assuntos
Antimônio , Macrófagos , Compostos de Estanho , Antimônio/química , Antimônio/farmacologia , Compostos de Estanho/química , Compostos de Estanho/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Camundongos , Nanopartículas Metálicas/química , Células RAW 264.7 , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanopartículas/química , Citocinas/metabolismo
3.
Dose Response ; 22(3): 15593258241279906, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224699

RESUMO

Introduction: Cell repair dynamics are crucial in optimizing anti-cancer therapies. Various assays (eg, comet assay and γ-H2AX) assess post-radiation repair kinetics, but interpreting such data is challenging and model-based data analyses are required. However, ambiguities in parameter calibration remain an unsolved challenge. To address this, we propose combining survival dose-rate effects with computer simulations to gain knowledge about repair kinetics. Methods: After a literature review, theoretical discriminators based on common fractionation/dose-rate-related effects were defined to discard unrealistic model dynamics. The Multi-Hit Repair (MHR) model was calibrated with canine osteosarcoma Abrams cell line data to study the discriminators' efficacy in scenarios with limited survival data. Additionally, survival dose-rate-dependent data from the human SiHa cervical cancer cell line were used to illustrate the survival behavior at diverse dose-rates and the capability of the MHR to model these data. Results: SiHa data confirmed the validity of the proposed discriminators. The discriminators filtered 99% of parameter sets, improving the calibration of Abrams cells data. Furthermore, results from both cell lines may hint universal aspects of cellular repair. Conclusions: Dose-rate theoretical discrimination criteria are an effective method to understand repair kinetics and improve radiobiological model calibration. Moreover, this methodology may be used to analyze diverse biological data using dynamic models in-silico.

4.
Chem Res Toxicol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115970

RESUMO

With numerous novel and innovative in vitro models emerging every year to reduce or replace animal testing, there is an urgent need to align the design, harmonization, and validation of such systems using in vitro-in vivo extrapolation (IVIVE) approaches. In particular, in inhalation toxicology, there is a lack of predictive and prevalidated in vitro lung models that can be considered a valid alternative for animal testing. The predictive power of such models can be enhanced by applying the Adverse Outcome Pathways (AOP) framework, which casually links key events (KE) relevant to IVIVE. However, one of the difficulties identified is that the endpoint analysis and readouts of specific assays in in vitro and animal models for specific toxicants are currently not harmonized, making the alignment challenging. We summarize the current state of the art in endpoint analysis in the two systems, focusing on inflammatory-induced effects and providing guidance for future research directions to improve the alignment.

6.
Chimia (Aarau) ; 78(6): 397-402, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38946412

RESUMO

Nanomaterials hold immense potential for numerous applications in energy, health care, and environmental sectors, playing an important role in our daily lives. Their utilization spans from improving energy efficiency to enhancing medical diagnostics, and mitigating environmental pollution, thus presenting a multifaceted approach towards achieving sustainability goals. To ensure the sustainable and safe utilization of nanomaterials, a thorough evaluation of potential hazards and risks is essential throughout their lifecycle-from resource extraction and production to use and disposal. In this review, we focus on understanding and addressing potential environmental and health risks associated with nanomaterial utilization. We advocate for a balanced approach with early hazard identification, safe-by-design principles, and life cycle assessments, while emphasizing safe handling and disposal practices, collaboration, and continuous improvement. Our goal is to ensure responsible nanotechnology development, fostering innovation alongside environmental and community well-being, through a holistic approach integrating science, ethics, and proactive risk assessment.


Assuntos
Nanoestruturas , Medição de Risco , Humanos , Poluição Ambiental/prevenção & controle , Nanotecnologia/métodos
7.
Mar Pollut Bull ; 203: 116468, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744048

RESUMO

Detection of small plastic particles in environmental water samples has been a topic of increasing interest in recent years. A multitude of techniques, such as variants of Raman spectroscopy, have been employed to facilitate their analysis in such complex sample matrices. However, these studies are often conducted for a limited number of plastic types in matrices with relatively little additional materials. Thus, much remains unknown about what parameters influence the detection limits of Raman spectroscopy for more environmentally relevant samples. To address this, this study utilizes Raman spectroscopy to detect six plastic particle types; 161 and 33 nm polystyrene, < 450 nm and 36 nm poly(ethylene terephthalate), 121 nm polypropylene, and 126 nm polyethylene; spiked into artificial saltwater, artificial freshwater, North Sea, Thames River, and Elbe River water. Overall, factors such as plastic particle properties, water matrix composition, and experimental setup were shown to influence the final limits of detection.


Assuntos
Monitoramento Ambiental , Água Doce , Plásticos , Análise Espectral Raman , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Plásticos/análise , Água Doce/química , Água do Mar/química , Rios/química , Microplásticos/análise
8.
Part Fibre Toxicol ; 21(1): 26, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778339

RESUMO

BACKGROUND: During inhalation, airborne particles such as particulate matter ≤ 2.5 µm (PM2.5), can deposit and accumulate on the alveolar epithelial tissue. In vivo studies have shown that fractions of PM2.5 can cross the alveolar epithelium to blood circulation, reaching secondary organs beyond the lungs. However, approaches to quantify the translocation of particles across the alveolar epithelium in vivo and in vitro are still not well established. In this study, methods to assess the translocation of standard diesel exhaust particles (DEPs) across permeable polyethylene terephthalate (PET) inserts at 0.4, 1, and 3 µm pore sizes were first optimized with transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-VIS), and lock-in thermography (LIT), which were then applied to study the translocation of DEPs across human alveolar epithelial type II (A549) cells. A549 cells that grew on the membrane (pore size: 3 µm) in inserts were exposed to DEPs at different concentrations from 0 to 80 µg.mL- 1 ( 0 to 44 µg.cm- 2) for 24 h. After exposure, the basal fraction was collected and then analyzed by combining qualitative (TEM) and quantitative (UV-VIS and LIT) techniques to assess the translocated fraction of the DEPs across the alveolar epithelium in vitro. RESULTS: We could detect the translocated fraction of DEPs across the PET membranes with 3 µm pore sizes and without cells by TEM analysis, and determine the percentage of translocation at approximatively 37% by UV-VIS (LOD: 1.92 µg.mL- 1) and 75% by LIT (LOD: 0.20 µg.cm- 2). In the presence of cells, the percentage of DEPs translocation across the alveolar tissue was determined around 1% at 20 and 40 µg.mL- 1 (11 and 22 µg.cm- 2), and no particles were detected at higher and lower concentrations. Interestingly, simultaneous exposure of A549 cells to DEPs and EDTA can increase the translocation of DEPs in the basal fraction. CONCLUSION: We propose a combination of analytical techniques to assess the translocation of DEPs across lung tissues. Our results reveal a low percentage of translocation of DEPs across alveolar epithelial tissue in vitro and they correspond to in vivo findings. The combination approach can be applied to any traffic-generated particles, thus enabling us to understand their involvement in public health.


Assuntos
Material Particulado , Alvéolos Pulmonares , Emissões de Veículos , Humanos , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Células A549 , Material Particulado/toxicidade , Material Particulado/análise , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Tamanho da Partícula , Microscopia Eletrônica de Transmissão , Polietilenotereftalatos/química , Polietilenotereftalatos/toxicidade , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise
9.
Curr Opin Biotechnol ; 87: 103128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581743

RESUMO

Classical Coulombic interaction, characterized by electrostatic interactions mediated through surface charges, is often regarded as the primary determinant in nanoparticles' (NPs) cellular association and internalization. However, the intricate physicochemical properties of particle surfaces, biomolecular coronas, and cell surfaces defy this oversimplified perspective. Moreover, the nanometrological techniques employed to characterize NPs in complex physiological fluids often exhibit limited accuracy and reproducibility. A more comprehensive understanding of nanoparticle-cell membrane interactions, extending beyond attractive forces between oppositely charged surfaces, necessitates the establishment of databases through rigorous physical, chemical, and biological characterization supported by nanoscale analytics. Additionally, computational approaches, such as in silico modeling and machine learning, play a crucial role in unraveling the complexities of these interactions.


Assuntos
Membrana Celular , Nanopartículas , Eletricidade Estática , Propriedades de Superfície , Membrana Celular/metabolismo , Aprendizado de Máquina , Nanopartículas/química
10.
Int J Hyperthermia ; 41(1): 2320852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465653

RESUMO

INTRODUCTION: Hyperthermia (HT) induces various cellular biological processes, such as repair impairment and direct HT cell killing. In this context, in-silico biophysical models that translate deviations in the treatment conditions into clinical outcome variations may be used to study the extent of such processes and their influence on combined hyperthermia plus radiotherapy (HT + RT) treatments under varying conditions. METHODS: An extended linear-quadratic model calibrated for SiHa and HeLa cell lines (cervical cancer) was used to theoretically study the impact of varying HT treatment conditions on radiosensitization and direct HT cell killing effect. Simulated patients were generated to compute the Tumor Control Probability (TCP) under different HT conditions (number of HT sessions, temperature and time interval), which were randomly selected within margins based on reported patient data. RESULTS: Under the studied conditions, model-based simulations suggested a treatment improvement with a total CEM43 thermal dose of approximately 10 min. Additionally, for a given thermal dose, TCP increased with the number of HT sessions. Furthermore, in the simulations, we showed that the TCP dependence on the temperature/time interval is more correlated with the mean value than with the minimum/maximum value and that comparing the treatment outcome with the mean temperature can be an excellent strategy for studying the time interval effect. CONCLUSION: The use of thermoradiobiological models allows us to theoretically study the impact of varying thermal conditions on HT + RT treatment outcomes. This approach can be used to optimize HT treatments, design clinical trials, and interpret patient data.


Assuntos
Hipertermia Induzida , Neoplasias do Colo do Útero , Feminino , Humanos , Terapia Combinada , Células HeLa , Probabilidade , Temperatura , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/terapia
11.
Environ Sci Nano ; 11(3): 1000-1011, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38496351

RESUMO

The presence of submicron- (1 µm-100 nm) and nanoplastic (<100 nm) particles within various sample matrices, ranging from marine environments to foods and beverages, has become a topic of increasing interest in recent years. Despite this interest, very few analytical techniques are known that allow for the detection of these small plastic particles in the low concentration ranges that they are anticipated to be present at. Research focused on optimizing surface-enhanced Raman scattering (SERS) to enhance signal obtained in Raman spectroscopy has been shown to have great potential for the detection of plastic particles below conventional resolution limits. In this study, we produce SERS substrates composed of gold nanostars and assess their potential for submicron- and nanoplastic detection. The results show 33 nm polystyrene could be detected down to 1.25 µg mL-1 while 36 nm poly(ethylene terephthalate) was detected down to 5 µg mL-1. These results confirm the promising potential of the gold nanostar-based SERS substrates for nanoplastic detection. Furthermore, combined with findings for 121 nm polypropylene and 126 nm polyethylene particles, they highlight potential differences in analytical performance that depend on the properties of the plastics being studied.

12.
Nanomaterials (Basel) ; 14(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38392715

RESUMO

The delivery of nanomedicines into cells holds enormous therapeutic potential; however little is known regarding how the extracellular matrix (ECM) can influence cell-nanoparticle (NP) interactions. Changes in ECM organization and composition occur in several pathophysiological states, including fibrosis and tumorigenesis, and may contribute to disease progression. We show that the physical characteristics of cellular substrates, that more closely resemble the ECM in vivo, can influence cell behavior and the subsequent uptake of NPs. Electrospinning was used to create two different substrates made of soft polyurethane (PU) with aligned and non-aligned nanofibers to recapitulate the ECM in two different states. To investigate the impact of cell-substrate interaction, A549 lung epithelial cells and MRC-5 lung fibroblasts were cultured on soft PU membranes with different alignments and compared against stiff tissue culture plastic (TCP)/glass. Both cell types could attach and grow on both PU membranes with no signs of cytotoxicity but with increased cytokine release compared with cells on the TCP. The uptake of silica NPs increased more than three-fold in fibroblasts but not in epithelial cells cultured on both membranes. This study demonstrates that cell-matrix interaction is substrate and cell-type dependent and highlights the importance of considering the ECM and tissue mechanical properties when designing NPs for effective cell targeting and treatment.

13.
J Phys Chem C Nanomater Interfaces ; 128(1): 421-427, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229591

RESUMO

Characterizing nanoparticles (NPs) is crucial in nanoscience due to the direct influence of their physiochemical properties on their behavior. Various experimental techniques exist to analyze the size and shape of NPs, each with advantages, limitations, proneness to uncertainty, and resource requirements. One of them is electron microscopy (EM), often considered the gold standard, which offers visualization of the primary particles. However, despite its advantages, EM can be expensive, less accessible, and difficult to apply during dynamic processes. Therefore, using EM for specific experimental conditions, such as observing dynamic processes or visualizing low-contrast particles, is challenging. This study showcases the potential of machine learning in deriving EM parameters by utilizing cost-effective and dynamic techniques such as dynamic light scattering (DLS) and UV-vis spectroscopy. Our developed model successfully predicts the size and shape parameters of gold NPs based on DLS and UV-vis results. Furthermore, we demonstrate the practicality of our model in situations in which conducting EM measurements presents a challenge: Tracking in situ the synthesis of 100 nm gold NPs.

14.
Drug Deliv Transl Res ; 14(10): 2655-2667, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38161192

RESUMO

Glioblastoma (GBM) stands as a highly aggressive and deadly malignant primary brain tumor with a median survival time of under 15 months upon disease diagnosis. While immunotherapies have shown promising results in solid cancers, brain cancers are still unresponsive to immunotherapy due to immunological dysfunction and the presence of a blood-brain barrier. Interleukin-12 (IL-12) emerges as a potent cytokine in fostering anti-tumor immunity by triggering interferon-gamma production in T and natural killer cells and changing macrophages to a tumoricidal phenotype. However, systemic administration of IL-12 toxicity in clinical trials often leads to significant toxicity, posing a critical hurdle. To overcome this major drawback, we have formulated a novel nanoadjuvant composed of immunostimulatory nanoparticles (ISN) loaded with IL-12 to decrease IL-12 toxicity and enhance the immune response by macrophages and GBM cancer cells. Our in vitro results reveal that ISN substantially increase the production of pro-inflammatory cytokines in GBM cancer cells (e.g. 2.6 × increase in IL-8 expression compared to free IL-12) and macrophages (e.g. 2 × increase in TNF-α expression and 6 × increase in IL-6 expression compared to the free IL-12). These findings suggest a potential modulation of the tumor microenvironment. Additionally, our study demonstrates the effective intracellular delivery of IL-12 by ISN, triggering alterations in the levels of pro-inflammatory cytokines at both transcriptional and protein expression levels. These results highlight the promise of the nanoadjuvant as a prospective platform for resharing the GBM microenvironment and empowering immunotherapy.


Assuntos
Adjuvantes Imunológicos , Neoplasias Encefálicas , Citocinas , Glioblastoma , Imunoterapia , Interleucina-12 , Nanopartículas , Glioblastoma/imunologia , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Imunoterapia/métodos , Humanos , Nanopartículas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Citocinas/imunologia , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Animais
15.
Front Nanotechnol ; 5: 1220514, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37954478

RESUMO

Introduction: Delivery of therapeutic nanoparticles (NPs) to cancer cells represents a promising approach for biomedical applications. A key challenge for nanotechnology translation from the bench to the bedside is the low amount of administered NPs dose that effectively enters target cells. To improve NPs delivery, several studies proposed NPs conjugation with ligands, which specifically deliver NPs to target cells via receptor binding. One such example is epidermal growth factor (EGF), a peptide involved in cell signaling pathways that control cell division by binding to epidermal growth factor receptor (EGFR). However, very few studies assessed the influence of EGF present in the cell environment, on the cellular uptake of NPs. Methods: We tested if the stimulation of EGFR-expressing lung carcinomacells A549 with EGF affects the uptake of 59 nm and 422 nm silica (SiO2) NPs. Additionally, we investigated whether the uptake enhancement can be achieved with gold NPs, suitable to downregulate the expression of cancer oncogene c-MYC. Results: Our findings show that EGF binding to its receptor results in receptor autophosphorylation and initiate signaling pathways, leading to enhanced endocytosis of 59 nm SiO2 NPs, but not 422 nm SiO2 NPs. Additionally, we demonstrated an enhanced gold (Au) NPs endocytosis and subsequently a higher downregulation of c-MYC. Discussion: These findings contribute to a better understanding of NPs uptake in the presence of EGF and that is a promising approach for improved NPs delivery.

16.
Toxins (Basel) ; 15(8)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37624239

RESUMO

The gastrointestinal tract is the main target of orally ingested nanoparticles (NPs) and at the same time is exposed to noxious substances, such as bacterial components. We investigated the interaction of 59 nm silica (SiO2) NPs with differentiated Caco-2 intestinal epithelial cells in the presence of cholera toxin subunit B (CTxB) and compared the effects to J774A.1 macrophages. CTxB can affect cellular functions and modulate endocytosis via binding to the monosialoganglioside (GM1) receptor, expressed on both cell lines. After stimulating macrophages with CTxB, we observed notable changes in the membrane structure but not in Caco-2 cells, and no secretion of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) was detected. Cells were then exposed to 59 nm SiO2 NPs and CtxB sequentially and simultaneously, resulting in a high NP uptake in J774A.1 cells, but no uptake in Caco-2 cells was detected. Flow cytometry analysis revealed that the exposure of J774A.1 cells to CTxB resulted in a significant reduction in the uptake of SiO2 NPs. In contrast, the uptake of NPs by highly selective Caco-2 cells remained unaffected following CTxB exposure. Based on colocalization studies, CTxB and NPs might enter cells via shared endocytic pathways, followed by their sorting into different intracellular compartments. Our findings provide new insights into CTxB's function of modulating SiO2 NP uptake in phagocytic but not in differentiated intestine cells.


Assuntos
Toxina da Cólera , Dióxido de Silício , Humanos , Toxina da Cólera/toxicidade , Dióxido de Silício/toxicidade , Células CACO-2 , Endocitose , Transporte Biológico
17.
Eur J Pharm Sci ; 188: 106511, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37385303

RESUMO

Transepithelial electrical resistance (TEER) measures electrical resistance across epithelial tissue barriers involving confluent layer(s) of cells. TEER values act as a prerequisite for determining the barrier integrity of cells, which play a key role in evaluating the transport of drugs, materials or chemicals of interest across an epithelial barrier. The measurements can be performed non-invasively by measuring ohmic resistance across a defined area. Thus, the TEER values are reported in Ω·cm2. In vitro epithelial models are typically assembled on semi-permeable inserts providing two-chamber compartments, and the majority of the studies use inserts with polyethylene terephthalate (PET) membranes. Recently, new inserts with different membrane types and properties have been introduced. However, the TEER values presented so far did not allow a direct comparison. This study presents the characterization of selected epithelial tissues, i.e., lung, retina, and intestine, grown on an ultra-thin ceramic microporous permeable insert (SiMPLI) and PET membranes with different properties, i.e., thickness, material, and pore numbers. We verified the epithelial cell growth on both inserts via phase-contrast and confocal laser scanning microscope imaging. Barrier characteristics were assessed by TEER measurements and also by evaluating the permeability of fluorescein isothiocyanate through cell layers. The findings indicated that background TEER value calculations and the available surface area for cell growth must be thoroughly assessed when new inserts are introduced, as the values cannot be directly compared without re-calculations. Finally, we proposed electrical circuit models highlighting the contributors to TEER recordings on PET and SiMPLI insert membranes. This study paves the way for making the ohmic-based evaluation of epithelial tissues' permeability independent of the material and geometry of the insert membrane used for cell growth.


Assuntos
Células Epiteliais , Pulmão , Impedância Elétrica , Epitélio , Fluoresceína
18.
Nanoscale Adv ; 5(11): 2963-2972, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37260492

RESUMO

Thin nanocomposite polymer films embedding various types of nanoparticles have been the target of abundant research to use them as sensors, smart coatings, or artificial skin. Their characterization is challenging and requires novel methods that can provide qualitative as well as quantitative information about their composition and the spatial distribution of nanoparticles. In this work, we show how lock-in thermography (LIT) can be used to quantify the concentration of gold nanoparticles embedded in polyvinyl alcohol (PVA) films. LIT is an emerging and non-destructive technique that measures the thermal signature produced by an absorbing sample illuminated by modulated light with a defined frequency. Films with various concentrations of gold nanoparticles of two different sizes have been prepared by evaporation from homogeneous aqueous PVA gold nanoparticle suspensions. When the thin films were illuminated with monochromatic light at a wavelength close to the plasmonic resonance signature of the nanoparticles, the amplitude of the thermal signature emitted by the nanoparticles was recorded. The measurements have been repeated for multiple modulation frequencies of the incident radiation. We have developed a mathematical method to quantitatively relate the concentration of nanoparticles to the measured amplitude. A discussion about the conditions under which the sample thickness can be determined is provided. Furthermore, our results show how LIT measurements can easily detect the presence of concentration gradients in samples and how the model allows the measured signal to be related to the respective concentrations. This work demonstrates the successful use of LIT as a reliable and non-destructive method to quantify nanoparticle concentrations.

19.
Environ Sci Technol ; 57(16): 6664-6672, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37058431

RESUMO

Many researchers have turned their attention to understanding microplastic interaction with marine fauna. Efforts are being made to monitor exposure pathways and concentrations and to assess the impact such interactions may have. To answer these questions, it is important to select appropriate experimental parameters and analytical protocols. This study focuses on medusae of Cassiopea andromeda jellyfish: a unique benthic jellyfish known to favor (sub-)tropical coastal regions which are potentially exposed to plastic waste from land-based sources. Juvenile medusae were exposed to fluorescent poly(ethylene terephthalate) and polypropylene microplastics (<300 µm), resin embedded, and sectioned before analysis with confocal laser scanning microscopy as well as transmission electron microscopy and Raman spectroscopy. Results show that the fluorescent microplastics were stable enough to be detected with the optimized analytical protocol presented and that their observed interaction with medusae occurs in a manner which is likely driven by the microplastic properties (e.g., density and hydrophobicity).


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Análise Espectral Raman , Fluxo de Trabalho , Microscopia Eletrônica , Monitoramento Ambiental , Poluentes Químicos da Água/análise
20.
Small ; 19(29): e2206903, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37021587

RESUMO

Understanding the interaction between cells and nanoparticles (NPs) is vital to understand the hazard associated with nanoparticles. This requires quantifying and interpreting dose-response relationships. Experiments with cells cultured in vitro and exposed to particle dispersions mainly rely on mathematical models that estimate the received nanoparticle dose. However, models need to consider that aqueous cell culture media wets the inner surface of hydrophilic open wells, which results in a curved liquid-air interface called the meniscus. Here the impact of the meniscus on nanoparticle dosimetry is addressed in detail. Experiments and build an advanced mathematical model, to demonstrate that the presence of the meniscus may bring about systematic errors that must be considered to advance reproducibility and harmonization is presented. The script of the model is co-published and can be adapted to any experimental setup. Finally, simple and practical solutions to this problem, such as covering the air-liquid interface with a permeable lid or soft rocking of the cell culture well plate is proposed.


Assuntos
Nanopartículas , Reprodutibilidade dos Testes , Técnicas de Cultura de Células/métodos , Modelos Teóricos , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA