Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Viruses ; 15(9)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37766238

RESUMO

The pathogenesis of influenza A viruses (IAVs) is influenced by several factors, including IAV strain origin and reassortment, tissue tropism and host type. While such factors were mostly investigated in the context of virus entry, fusion and replication, little is known about the viral-induced changes to the host lipid membranes which might be relevant in the context of virion assembly. In this work, we applied several biophysical fluorescence microscope techniques (i.e., Förster energy resonance transfer, generalized polarization imaging and scanning fluorescence correlation spectroscopy) to quantify the effect of infection by two IAV strains of different origin on the plasma membrane (PM) of avian and human cell lines. We found that IAV infection affects the membrane charge of the inner leaflet of the PM. Moreover, we showed that IAV infection impacts lipid-lipid interactions by decreasing membrane fluidity and increasing lipid packing. Because of such alterations, diffusive dynamics of membrane-associated proteins are hindered. Taken together, our results indicate that the infection of avian and human cell lines with IAV strains of different origins had similar effects on the biophysical properties of the PM.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Eletricidade Estática , Membrana Celular , Linhagem Celular , Lipídeos
2.
PLoS One ; 18(8): e0285486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535571

RESUMO

Protein-protein-interactions play an important role in many cellular functions. Quantitative non-invasive techniques are applied in living cells to evaluate such interactions, thereby providing a broader understanding of complex biological processes. Fluorescence fluctuation spectroscopy describes a group of quantitative microscopy approaches for the characterization of molecular interactions at single cell resolution. Through the obtained molecular brightness, it is possible to determine the oligomeric state of proteins. This is usually achieved by fusing fluorescent proteins (FPs) to the protein of interest. Recently, the number of novel green FPs has increased, with consequent improvements to the quality of fluctuation-based measurements. The photophysical behavior of FPs is influenced by multiple factors (including photobleaching, protonation-induced "blinking" and long-lived dark states). Assessing these factors is critical for selecting the appropriate fluorescent tag for live cell imaging applications. In this work, we focus on novel green FPs that are extensively used in live cell imaging. A systematic performance comparison of several green FPs in living cells under different pH conditions using Number & Brightness (N&B) analysis and scanning fluorescence correlation spectroscopy was performed. Our results show that the new FP Gamillus exhibits higher brightness at the cost of lower photostability and fluorescence probability (pf), especially at lower pH. mGreenLantern, on the other hand, thanks to a very high pf, is best suited for multimerization quantification at neutral pH. At lower pH, mEGFP remains apparently the best choice for multimerization investigation. These guidelines provide the information needed to plan quantitative fluorescence microscopy involving these FPs, both for general imaging or for protein-protein-interactions quantification via fluorescence fluctuation-based methods.


Assuntos
Benchmarking , Fenômenos Biológicos , Proteínas de Fluorescência Verde/metabolismo , Espectrometria de Fluorescência/métodos , Microscopia de Fluorescência/métodos , Corantes , Proteínas Luminescentes/metabolismo
3.
Nat Chem Biol ; 18(1): 64-69, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34934192

RESUMO

Direct control of protein interactions by chemically induced protein proximity holds great potential for both cell and synthetic biology as well as therapeutic applications. Low toxicity, orthogonality and excellent cell permeability are important criteria for chemical inducers of proximity (CIPs), in particular for in vivo applications. Here, we present the use of the agrochemical mandipropamid (Mandi) as a highly efficient CIP in cell culture systems and living organisms. Mandi specifically induces complex formation between a sixfold mutant of the plant hormone receptor pyrabactin resistance 1 (PYR1) and abscisic acid insensitive (ABI). It is orthogonal to other plant hormone-based CIPs and rapamycin-based CIP systems. We demonstrate the applicability of the Mandi system for rapid and efficient protein translocation in mammalian cells and zebrafish embryos, protein network shuttling and manipulation of endogenous proteins.


Assuntos
Amidas/farmacologia , Ácidos Carboxílicos/farmacologia , Fungicidas Industriais/farmacologia , Ácido Abscísico/metabolismo , Animais , Dimerização , Peixe-Zebra/embriologia
4.
Biophys J ; 120(24): 5478-5490, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34808098

RESUMO

Influenza A virus (IAV) is a respiratory pathogen that causes seasonal epidemics with significant mortality. One of the most abundant proteins in IAV particles is the matrix protein 1 (M1), which is essential for the virus structural stability. M1 organizes virion assembly and budding at the plasma membrane (PM), where it interacts with other viral components. The recruitment of M1 to the PM as well as its interaction with the other viral envelope proteins (hemagglutinin [HA], neuraminidase, matrix protein 2 [M2]) is controversially discussed in previous studies. Therefore, we used fluorescence fluctuation microscopy techniques (i.e., scanning fluorescence cross-correlation spectroscopy and number and brightness) to quantify the oligomeric state of M1 and its interactions with other viral proteins in co-transfected as well as infected cells. Our results indicate that M1 is recruited to the PM by M2, as a consequence of the strong interaction between the two proteins. In contrast, only a weak interaction between M1 and HA was observed. M1-HA interaction occurred only in the event that M1 was already bound to the PM. We therefore conclude that M2 initiates the assembly of IAV by recruiting M1 to the PM, possibly allowing its further interaction with other viral proteins.


Assuntos
Influenza Humana , Proteínas da Matriz Viral , Membrana Celular/metabolismo , Humanos , Influenza Humana/metabolismo , Microscopia , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus
5.
Elife ; 102021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34494547

RESUMO

Signaling pathways in biological systems rely on specific interactions between multiple biomolecules. Fluorescence fluctuation spectroscopy provides a powerful toolbox to quantify such interactions directly in living cells. Cross-correlation analysis of spectrally separated fluctuations provides information about intermolecular interactions but is usually limited to two fluorophore species. Here, we present scanning fluorescence spectral correlation spectroscopy (SFSCS), a versatile approach that can be implemented on commercial confocal microscopes, allowing the investigation of interactions between multiple protein species at the plasma membrane. We demonstrate that SFSCS enables cross-talk-free cross-correlation, diffusion, and oligomerization analysis of up to four protein species labeled with strongly overlapping fluorophores. As an example, we investigate the interactions of influenza A virus (IAV) matrix protein 2 with two cellular host factors simultaneously. We furthermore apply raster spectral image correlation spectroscopy for the simultaneous analysis of up to four species and determine the stoichiometry of ternary IAV polymerase complexes in the cell nucleus.


Assuntos
Espectrometria de Fluorescência/métodos , Proteínas da Matriz Viral/metabolismo , Células A549 , Corantes Fluorescentes/química , Células HEK293 , Humanos , Microscopia Confocal/métodos
6.
J Virol ; 94(14)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32350075

RESUMO

Viruses from the family Hantaviridae are encountered as emerging pathogens causing two life-threatening human zoonoses: hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), with case fatality rates of up to 50%. Here, we comprehensively investigated entry of the Old World hantavirus Puumala virus (PUUV) into mammalian cells, showing that upon treatment with pharmacological inhibitors of macropinocytosis and clathrin-mediated endocytosis, PUUV infections are greatly reduced. We demonstrate that the inhibitors did not interfere with viral replication and that RNA interference, targeting cellular mediators of macropinocytosis, decreases PUUV infection levels significantly. Moreover, we established lipophilic tracer staining of PUUV particles and show colocalization of stained virions and markers of macropinosomes. Finally, we report a significant increase in the fluid-phase uptake of cells infected with PUUV, indicative of a virus-triggered promotion of macropinocytosis.IMPORTANCE The family Hantaviridae comprises a diverse group of virus species and is considered an emerging global public health threat. Individual hantavirus species differ considerably in terms of their pathogenicity but also in their cell biology and host-pathogen interactions. In this study, we focused on the most prevalent pathogenic hantavirus in Europe, Puumala virus (PUUV), and investigated the entry and internalization of PUUV into mammalian cells. We show that both clathrin-mediated endocytosis and macropinocytosis are cellular pathways exploited by the virus to establish productive infections and demonstrate that pharmacological inhibition of macropinocytosis or a targeted knockdown using RNA interference significantly reduced viral infections. We also found indications of an increase of macropinocytic uptake upon PUUV infection, suggesting that the virus triggers specific cellular mechanisms in order to stimulate its own internalization, thus facilitating infection.


Assuntos
Clatrina/metabolismo , Febre Hemorrágica com Síndrome Renal/metabolismo , Pinocitose , Virus Puumala/metabolismo , Internalização do Vírus , Animais , Chlorocebus aethiops , Febre Hemorrágica com Síndrome Renal/patologia , Células Vero
7.
Biomolecules ; 10(5)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455962

RESUMO

Alkylphospholipids are a novel class of antineoplastic drugs showing remarkable therapeutic potential. Among them, erufosine (EPC3) is a promising drug for the treatment of several types of tumors. While EPC3 is supposed to exert its function by interacting with lipid membranes, the exact molecular mechanisms involved are not known yet. In this work, we applied a combination of several fluorescence microscopy and analytical chemistry approaches (i.e., scanning fluorescence correlation spectroscopy, line-scan fluorescence correlation spectroscopy, generalized polarization imaging, as well as thin layer and gas chromatography) to quantify the effect of EPC3 in biophysical models of the plasma membrane, as well as in cancer cell lines. Our results indicate that EPC3 affects lipid-lipid interactions in cellular membranes by decreasing lipid packing and increasing membrane disorder and fluidity. As a consequence of these alterations in the lateral organization of lipid bilayers, the diffusive dynamics of membrane proteins are also significantly increased. Taken together, these findings suggest that the mechanism of action of EPC3 could be linked to its effects on fundamental biophysical properties of lipid membranes, as well as on lipid metabolism in cancer cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Organofosfatos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Feminino , Humanos , Bicamadas Lipídicas/química , Células MCF-7 , Fluidez de Membrana , Lipídeos de Membrana/química , Microdomínios da Membrana/ultraestrutura
8.
PLoS One ; 15(4): e0231827, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32325482

RESUMO

The diagnosis of infective endocarditis (IE) remains a challenge. One of the rare bacterial species recently associated with biofilms and negative cultures in infective endocarditis is Aerococcus urinae. Whether the low number of reported cases might be due to lack of awareness and misidentification, mainly as streptococci, is currently being discussed. To verify the relevance and biofilm potential of Aerococcus in endocarditis, we used fluorescence in situ hybridization to visualize the microorganisms within the heart valve tissue. We designed and optimized a specific FISH probe (AURI) for in situ visualization and identification of A. urinae in sections of heart valves from two IE patients whose 16S rRNA gene sequencing had deteced A. urinae. Both patients had a history of urinary tract infections. FISH visualized impressive in vivo grown biofilms in IE, thus confirming the potential of A. urinae as a biofilm pathogen. In both cases, FISH/PCR was the only method to unequivocally identify A. urinae as the only causative pathogen for IE. The specific FISH assay for A. urinae is now available for further application in research and diagnostics. A. urinae should be considered in endocarditis patients with a history of urinary tract infections. These findings support the biofilm potential of A. urinae as a virulence factor and are meant to raise the awareness of this pathogen.


Assuntos
Aerococcus/isolamento & purificação , Biofilmes , Endocardite Bacteriana/diagnóstico , Endocardite Bacteriana/microbiologia , Valvas Cardíacas/microbiologia , Aerococcus/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Hibridização in Situ Fluorescente/métodos , Masculino , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia
9.
Anaerobe ; 47: 25-32, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28300642

RESUMO

During six years as German National Consultant Laboratory for Spirochetes we investigated 149 intestinal biopsies from 91 patients, which were histopathologically diagnosed with human intestinal spirochetosis (HIS), using fluorescence in situ hybridization (FISH) combined with 16S rRNA gene PCR and sequencing. Aim of this study was to complement histopathological findings with FISH and PCR for definite diagnosis and species identification of the causative pathogens. HIS is characterized by colonization of the colonic mucosa of the human distal intestinal tract by Brachyspira spp. Microbiological diagnosis of HIS is not performed, because of the fastidious nature and slow growth of Brachyspira spp. in culture. In clinical practice, diagnosis of HIS relies solely on histopathology without differentiation of the spirochetes. We used a previously described FISH probe to detect and identify Brachyspira spp. in histological gut biopsies. FISH allowed rapid visualization and identification of Brachyspira spp. in 77 patients. In most cases, the bright FISH signal already allowed rapid localization of Brachyspira spp. at 400× magnification. By sequencing, 53 cases could be assigned to the B. aalborgi lineage including "B. ibaraki" and "B. hominis", and 23 cases to B. pilosicoli. One case showed mixed colonization. The cases reported here reaffirm all major HIS Brachyspira spp. clusters already described. However, the phylogenetic diversity seems to be even greater than previously reported. In 14 cases, we could not confirm HIS by either FISH or PCR, but found colonization of the epithelium by rods and cocci, indicating misdiagnosis by histopathology. FISH in combination with molecular identification by 16S rRNA gene sequencing has proved to be a valuable addition to histopathology. It provides definite diagnosis of HIS and allows insights into phylogeny and distribution of Brachyspira spp. HIS should be considered as a differential diagnosis in diarrhea of unknown origin, particularly in patients from risk groups (e.g. patients with colonic adenomas, inflammatory polyps, inflammatory bowel disease or HIV infection and in men who have sex with men).


Assuntos
Brachyspira/classificação , Brachyspira/isolamento & purificação , Variação Genética , Infecções por Bactérias Gram-Negativas/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brachyspira/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Feminino , Genes de RNAr , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Adulto Jovem
10.
Int J Med Microbiol ; 305(7): 709-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26365167

RESUMO

Syphilis is often called the great imitator because of its frequent atypical clinical manifestations that make the disease difficult to recognize. Because Treponema pallidum subsp. pallidum, the infectious agent of syphilis, is yet uncultivated in vitro, diagnosis is usually made using serology; however, in cases where serology is inconclusive or in patients with immunosuppression where these tests may be difficult to interpret, the availability of a molecular tool for direct diagnosis may be of pivotal importance. Here we present a fluorescence in situ hybridization (FISH) assay that simultaneously identifies and analyzes spatial distribution of T. pallidum in histological tissue sections. For this assay the species-specific FISH probe TPALL targeting the 16S rRNA of T. pallidum was designed in silico and evaluated using T. pallidum infected rabbit testicular tissue and a panel of non-syphilis spirochetes as positive and negative controls, respectively, before application to samples from four syphilis-patients. In a HIV positive patient, FISH showed the presence of T. pallidum in inguinal lymph node tissue. In a patient not suspected to suffer from syphilis but underwent surgery for phimosis, numerous T. pallidum cells were found in preputial tissue. In two cases with oral involvement, FISH was able to differentiate T. pallidum from oral treponemes and showed infection of the oral mucosa and tonsils, respectively. The TPALL FISH probe is now readily available for in situ identification of T. pallidum in selected clinical samples as well as T. pallidum research applications and animal models.


Assuntos
DNA Bacteriano/análise , Hibridização in Situ Fluorescente/métodos , Patologia Molecular/métodos , Sífilis/diagnóstico , Sífilis/patologia , Treponema pallidum/genética , Adulto , Idoso , Animais , DNA Bacteriano/genética , DNA Ribossômico/genética , Modelos Animais de Doenças , Humanos , Linfonodos/microbiologia , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/microbiologia , Mucosa Bucal/patologia , Sondas de Oligonucleotídeos/genética , Tonsila Palatina/microbiologia , Tonsila Palatina/patologia , Pênis/microbiologia , Pênis/patologia , RNA Ribossômico 16S/genética , Coelhos , Testículo/microbiologia , Testículo/patologia
11.
J Clin Microbiol ; 51(11): 3858-61, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966507

RESUMO

The performance of a real-time PCR assay targeting the Tropheryma whipplei rpoB gene was evaluated using test strains and 1,236 clinical specimens in a national reference laboratory. The novel rpoB-PCR assay proved to be specific, revealed improved analytical sensitivity, and substantially accelerated detection of T. whipplei DNA in clinical specimens.


Assuntos
Técnicas Bacteriológicas/métodos , RNA Polimerases Dirigidas por DNA/genética , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Tropheryma/isolamento & purificação , Doença de Whipple/diagnóstico , Humanos , Sensibilidade e Especificidade , Fatores de Tempo , Tropheryma/genética , Doença de Whipple/microbiologia
12.
PLoS One ; 7(5): e37583, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22655057

RESUMO

The polymicrobial nature of periodontal diseases is reflected by the diversity of phylotypes detected in subgingival plaque and the finding that consortia of suspected pathogens rather than single species are associated with disease development. A number of these microorganisms have been demonstrated in vitro to interact and enhance biofilm integration, survival or even pathogenic features. To examine the in vivo relevance of these proposed interactions, we extended the spatial arrangement analysis tool of the software daime (digital image analysis in microbial ecology). This modification enabled the quantitative analysis of microbial co-localization in images of subgingival biofilm species, where the biomass was confined to fractions of the whole-image area, a situation common for medical samples. Selected representatives of the disease-associated red and orange complexes that were previously suggested to interact with each other in vitro (Tannerella forsythia with Fusobacterium nucleatum and Porphyromonas gingivalis with Prevotella intermedia) were chosen for analysis and labeled with specific fluorescent probes via fluorescence in situ hybridization. Pair cross-correlation analysis of in vivo grown biofilms revealed tight clustering of F. nucleatum/periodonticum and T. forsythia at short distances (up to 6 µm) with a pronounced peak at 1.5 µm. While these results confirmed previous in vitro observations for F. nucleatum and T. forsythia, random spatial distribution was detected between P. gingivalis and P. intermedia in the in vivo samples. In conclusion, we successfully employed spatial arrangement analysis on the single cell level in clinically relevant medical samples and demonstrated the utility of this approach for the in vivo validation of in vitro observations by analyzing statistically relevant numbers of different patients. More importantly, the culture-independent nature of this approach enables similar quantitative analyses for "as-yet-uncultured" phylotypes which cannot be characterized in vitro.


Assuntos
Bacteroides/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Fusobacterium nucleatum/crescimento & desenvolvimento , Doenças Periodontais/microbiologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Prevotella intermedia/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Bolsa Periodontal/microbiologia , Software
13.
Eur J Oral Sci ; 118(5): 466-74, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20831580

RESUMO

The aetiology of periodontal disease has been a field of intensive research in the past decades. Along with a variety of other putative pathogens, different members of the genus Selenomonas have repeatedly been associated with both generalized aggressive periodontitis and chronic periodontitis. For the present study, a specific oligonucleotide probe targeting the majority of all oral Selenomonas spp. was designed. Their prevalence was determined, using dot-blot hybridization, in a total of 742 subgingival samples collected from patients with generalized aggressive (n=62) and chronic periodontitis (n=82), and from periodontitis-resistant subjects (n=19). In addition, fluorescence in situ hybridization (FISH) and electron microscopy were performed to analyze the spatial arrangement of Selenomonas in subgingival biofilms collected from patients with generalized aggressive periodontitis. In the samples from patients, Selenomonas spp. showed a lower prevalence in both diseased groups compared with other putative pathogens, and a relatively high prevalence in the periodontitis-resistant group. Consequently, Selenomonas spp. do not seem to be suitable diagnostic marker organisms for periodontal disease. By contrast, FISH and electron microscopic analysis of periodontal carriers revealed that Selenomonas spp. appeared in large numbers in all parts of the collected biofilms and seemed, if present in a site from patients, to make a relevant contribution to their structural organization.


Assuntos
Periodontite Agressiva/microbiologia , Periodontite Crônica/microbiologia , Placa Dentária/microbiologia , Selenomonas/genética , Adulto , Idoso , Periodontite Agressiva/epidemiologia , Biofilmes , Portador Sadio/microbiologia , Estudos de Casos e Controles , Periodontite Crônica/epidemiologia , DNA Bacteriano/genética , Feminino , Especificidade de Hospedeiro , Humanos , Immunoblotting , Hibridização in Situ Fluorescente , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , RNA Ribossômico 16S/genética , Selenomonas/classificação
14.
BMC Microbiol ; 10: 66, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20193074

RESUMO

BACKGROUND: Bacteria in periodontal pockets develop complex sessile communities that attach to the tooth surface. These highly dynamic microfloral environments challenge both clinicians and researchers alike. The exploration of structural organisation and bacterial interactions within these biofilms is critically important for a thorough understanding of periodontal disease. In recent years, Filifactor alocis, a fastidious, Gram-positive, obligately anaerobic rod was repeatedly identified in periodontal lesions using DNA-based methods. It has been suggested to be a marker for periodontal deterioration. The present study investigated the epidemiology of F. alocis in periodontal pockets and analysed the spatial arrangement and architectural role of the organism in in vivo grown subgingival biofilms. RESULTS: A species-specific oligonucleotide probe, FIAL, was designed and evaluated. A total of 490 subgingival plaque samples were submitted to PCR and subsequent dot blot hybridization to compare the prevalence of F. alocis in patients suffering from generalized aggressive periodontitis (GAP), chronic periodontitis (CP), and control subjects resistant to periodontitis. Moreover, a specially designed carrier system was used to collect in vivo grown subgingival biofilms from GAP patients. Subsequent topographic analysis was performed using fluorescence in situ hybridization.While the majority of patients suffering from GAP or CP harboured F. alocis, it was rarely detected in the control group. In the examined carrier-borne biofilms the organism predominantly colonized apical parts of the pocket in close proximity to the soft tissues and was involved in numerous structures that constitute characteristic architectural features of subgingival periodontal biofilms. CONCLUSIONS: F. alocis is likely to make a relevant contribution to the pathogenetic structure of biofilms accounting for periodontal inflammation and can be considered an excellent marker organism for periodontal disease.


Assuntos
Periodontite Agressiva/microbiologia , Biofilmes , Infecções por Fusobacterium/microbiologia , Fusobacterium/fisiologia , Bolsa Periodontal/microbiologia , Distribuição de Qui-Quadrado , Fusobacterium/genética , Fusobacterium/crescimento & desenvolvimento , Fusobacterium/isolamento & purificação , Humanos , Immunoblotting , Hibridização in Situ Fluorescente , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase , Prevalência , Sensibilidade e Especificidade , Manejo de Espécimes
15.
Infect Immun ; 78(2): 586-94, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19995898

RESUMO

Host susceptibility to infection is controlled in large measure by the genetic makeup of the host. Spirochetes of the genus Borrelia include nearly 40 species of vector-borne spirochetes that are capable of infecting a wide range of mammalian hosts, causing Lyme disease and relapsing fever. Relapsing fever is associated with high-level bacteremia, as well as hematologic manifestations, such as thrombocytopenia (i.e., low platelet numbers) and anemia. To facilitate studies of genetic control of susceptibility to Borrelia hermsii infection, we performed a systematic analysis of the course of infection using immunocompetent and immunocompromised inbred strains of mice. Our analysis revealed that sensitivity to B. hermsii infections is genetically controlled. In addition, whereas the role of adaptive immunity to relapsing fever-causing spirochetes is well documented, we found that innate immunity contributes significantly to the reduction of bacterial burden. Similar to human infection, the progression of the disease in mice was associated with thrombocytopenia and anemia. Histological and fluorescence in situ hybridization (FISH) analysis of infected tissues indicated that red blood cells (RBCs) were removed by tissue-resident macrophages, a process that could lead to anemia. Spirochetes in the spleen and liver were often visualized associated with RBCs, lending support to the hypothesis that direct interaction of B. hermsii spirochetes with RBCs leads to clearance of bacteria from the bloodstream by tissue phagocytes.


Assuntos
Predisposição Genética para Doença , Imunidade Inata/genética , Febre Recorrente/genética , Febre Recorrente/imunologia , Anemia/genética , Anemia/microbiologia , Animais , Progressão da Doença , Feminino , Citometria de Fluxo , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos , Febre Recorrente/patologia , Fatores Sexuais , Trombocitopenia/genética , Trombocitopenia/microbiologia
16.
J Clin Microbiol ; 47(5): 1393-401, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19279178

RESUMO

Human intestinal spirochetosis (HIS) is associated with overgrowth of the large intestine by spirochetes of the genus Brachyspira. The microbiological diagnosis of HIS is hampered by the fastidious nature and slow growth of Brachyspira spp. In clinical practice, HIS is diagnosed histopathologically, and a significant portion of cases may be missed. Fluorescence in situ hybridization (FISH) is a molecular method that allows the visualization and identification of single bacteria within tissue sections. In this study, we analyzed intestinal biopsy samples from five patients with possible HIS. All specimens yielded positive results by histopathological techniques. PCR amplification and sequencing of the 16S rRNA gene were performed. Sequences of two isolates clustered in the group of Brachyspira aalborgi, whereas in three cases, the sequences were highly similar to that of Brachyspira pilosicoli. Three phylotypes showed mismatches at distinct nucleotide positions with Brachyspira sp. sequences published previously. In addition, culture for Brachyspira was successful in three cases. On the basis of these data, we designed and evaluated a Brachyspira genus-specific 16S rRNA-directed FISH probe that detects all of the Brachyspira spp. published to date. FISH of biopsy samples resulted in strong, unequivocal signals of brush-like formations at the crypt surfaces. This technique allowed simultaneous visualization of single spirochetes and their identification as Brachyspira spp. In conclusion, FISH provides a fast and accurate technique for the visualization and identification of intestinal spirochetes in tissue sections. It therefore represents a valuable tool for routine diagnosis of HIS.


Assuntos
Brachyspira/genética , Gastroenteropatias/microbiologia , Infecções por Bactérias Gram-Negativas/diagnóstico , Hibridização in Situ Fluorescente/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Brachyspira/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Feminino , Humanos , Mucosa Intestinal/microbiologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Sondas de Oligonucleotídeos/genética , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA
17.
Vet Microbiol ; 128(1-2): 118-25, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18024006

RESUMO

Digital dermatitis (DD) of cattle leads to lameness and a decrease of milk production and is responsible for major economic losses worldwide. Although a bacterial aetiology is generally accepted, it still is unclear which microorganisms cause and/or maintain the disease. Recently, a previously undiscovered bacterial species, Guggenheimella bovis, has been isolated from the front of two DD lesions in Swiss cattle and suggested as a potential pathogen. The aims of the present study were to determine the prevalence of G. bovis in 58 German cows suffering from DD via dot blot hybridization, and to analyse the spatial distribution of G. bovis within the affected tissue by fluorescence in situ hybridization (FISH). A species-specific probe, GUBO1, was designed and evaluated. In none of the 58 samples Guggenheimella could be detected, while cultured G. bovis was reliably identified by GUBO1. Further FISH experiments were carried out on two additional biopsies of Swiss cattle tested positive for G. bovis by quantitative PCR and permitted visualization of the newly discovered bacteria in situ. In these biopsies G. bovis proved to be tissue invasive forming characteristic spherical microcolonies not only within the bacterial biofilm but also in seemingly unaffected parts of the tissue not yet reached by the advancing bacterial front. Although the presence of G. bovis does not constitute an essential premise for DD, it seems likely that the bacterial species involved in DD vary, and that in some cases G. bovis is crucial for the development of DD lesions.


Assuntos
Doenças dos Bovinos/microbiologia , Dermatoses do Pé/veterinária , Infecções por Bactérias Gram-Positivas/veterinária , Bacilos Gram-Positivos Formadores de Endosporo/fisiologia , Casco e Garras/microbiologia , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/patologia , Feminino , Dermatoses do Pé/epidemiologia , Dermatoses do Pé/microbiologia , Dermatoses do Pé/patologia , Alemanha/epidemiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/patologia , Bacilos Gram-Positivos Formadores de Endosporo/isolamento & purificação , Casco e Garras/patologia , Immunoblotting , Hibridização in Situ Fluorescente , Sondas Moleculares/metabolismo , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA