Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
ACS Appl Mater Interfaces ; 16(22): 28991-29002, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38769310

RESUMO

Triphenylphosphine functionalized carbon dots (TPP-CDs) showcase robust mitochondria targeting capacity owing to their positive electrical properties. However, TPP-CDs typically involve complicated synthesis steps and time-consuming postmodification procedures. Especially, the one-step target-oriented synthesis of TPP-CDs and the regulation of TPP linkage modes remain challenges. Herein, we propose a free-radical-initiated random copolymerization in combination with hydrothermal carbonation to regulate the TPP backbone linkage for target-oriented synthesis of triphenylphosphine copolymerization carbon dots (TPPcopoly-CDs). The linkage mechanism of random copolymerization reactions is directional, straightforward, and controllable. The TPP content and IC50 of hydroxyl radicals scavenging ability of TPPcopoly-CDs are 53 wt % and 0.52 mg/mL, respectively. TPP serves as a charge control agent to elevate the negatively charged CDs by 20 mV. TPPcopoly-CDs with negative charge can target mitochondria, and in the corresponding mechanism the TPP moiety plays a crucial role in targeting mitochondria. This discovery provides a new perspective on the controlled synthesis, TPP linkage modes, and mitochondrial targeting design of TPP-CDs.


Assuntos
Carbono , Mitocôndrias , Compostos Organofosforados , Pontos Quânticos , Compostos Organofosforados/química , Carbono/química , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Pontos Quânticos/química , Humanos , Espécies Reativas de Oxigênio/metabolismo , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacologia , Células HeLa
2.
J Colloid Interface Sci ; 660: 534-544, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266335

RESUMO

Suppression of vascular cell senescence is of great significance in preventing cardiovascular diseases such as hypertension and atherosclerosis. The oxidative stress damage caused by reactive oxygen species (ROS) can lead to cellular senescence. Rapamycin (Rapa) is well known to suppress cell senescence via mammalian target of rapamycin (mTOR) pathway. However, poor water solubility and lack of ROS scavenging ability limit the further development of Rapa. To improve the solubility of Rapa and endow with ROS scavenging ability, Rapa functionalized carbon dots (Rapa-CDs) are target-oriented synthesized via free radical polymerization combination with hydrothermal carbonization. Rapa-CDs improve the solubility of Rapa and show ROS scavenging abilities. The solubility of Rapa-CDs with 9.41 g is improved 3.6 × 104 times higher than that of Rapa (2.6 × 10-4 g). The half maximal inhibitory concentration (IC50) of Rapa-CDs toward hydroxyl radical (•OH) and 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH•) are 0.18 and 0.17 mg/mL, respectively. Rapa-CDs show anti-oxidative stress effect in HEVECs (Human Umbilical Vein Endothelial Cells) via reducing ROS levels by 87 %. Rapa-CDs alleviate HUVECs senescence by suppressing mTOR overactivation, attenuate the expression of P53, P21 and P16. The study demonstrates the target-oriented synthesis of drugs functionalized CDs with anti-senescence via dual-pathway of anti-oxidative stress and mTOR.


Assuntos
Transdução de Sinais , Sirolimo , Humanos , Transdução de Sinais/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Senescência Celular , Carbono/farmacologia
3.
ACS Appl Mater Interfaces ; 15(48): 55335-55345, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37994814

RESUMO

The synthesis of photothermal carbon/hydroxyapatite composites poses challenges due to the binding modes and relatively low photothermal conversion efficiency. To address these challenges, the calcium ions chelated by photothermal carbon dots (PTC-CDs) served as the calcium source for the synthesis of photothermal carbon dots chelated hydroxyapatite (PTC-HA) filler via the coprecipitation method. The coordination constant K and chelation sites of PTC-HA were 7.20 × 102 and 1.61, respectively. Compared to PTC-CDs, the coordination constant K and chelation sites of PTC-HA decreased by 88 and 35% due to chelating to hydroxyapatite, respectively. PTC-HA possesses fluorescence and photothermal performance with a 62.4% photothermal conversion efficiency. The incorporation of PTC-HA filler significantly enhances as high as 76% the adhesion performance of the adhesive hydrogel. PTC-HA with high photothermal conversion efficiency and enhancing adhesion performance holds promise for applications in high photothermal conversion efficiency, offering tissue adhesive properties and fluorescence capabilities to the hydrogel.

5.
ACS Appl Mater Interfaces ; 15(34): 40163-40177, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37603390

RESUMO

The bone-targeting mechanism of clinic bisphosphonate-type drugs, such as alendronate, risedronate, and ibandronate, relies on chelated calcium ions on the surface of the bone mineralized matrix for the treatment of osteoporosis. EGTA with aminocarboxyl chelating ligands can specifically chelate calcium ions. Inspired by the bone-targeting mechanism of bisphosphonates, we hypothesize that EGTA-derived carbon dots (EGTA-CDs) hold bone-targeting ability. For the target-oriented synthesis of EGTA-CDs and to endow CDs with bone targeting, we designed calcium ion chelating agents as precursors, including aminocarboxyl chelating agents (EGTA and EDTA) and bisphosphonate agents (ALN and HEDP) for the target-oriented synthesis of aminocarboxyl-derived CDs (EGTA-CDs and EDTA-CDs) and bisphosphonate-derived CDs (ALN-CDs and HEDP-CDs) with high synthetic yield. The synthetic yield of EGTA-CDs reached 87.6%. Aminocarboxyl-derived CDs and bisphosphonate-derived CDs retain the chelation ability of calcium ions and can specifically bind calcium ions. The chemical environment bone-targeting value coordination constant K and chelation sites of EGTA-CDs were 6.48 × 104 M-1 and 4.12, respectively. A novel method was established to demonstrate the bone-targeting capability of chelate-functionalized carbon dots using fluorescence quenching in a simulated bone trauma microenvironment. EGTA-CDs exhibit superior bone-targeting ability compared with other aminocarboxyl-derived CDs and bisphosphonate-derived CDs. EGTA-CDs display exceptional specificity toward calcium ions and better bone affinity than ALN-CDs, suggesting their potential as novel bone-targeting drugs. EGTA-CDs with strong calcium ion chelating ability have calcium ion affinity in simulated body fluid and bone-targeting ability in a simulated bone trauma microenvironment. These findings offer new avenues for the development of advanced bone-targeting strategies.


Assuntos
Cálcio , Ácido Etidrônico , Ácido Egtázico , Ácido Edético , Quelantes/farmacologia , Difosfonatos/farmacologia , Carbono
6.
Nanomaterials (Basel) ; 13(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985896

RESUMO

In this paper, we present a new methodology for creating 3D ordered porous nanocomposites based on anodic aluminum oxide template with polyaniline (PANI) and silver NPs. The approach includes in situ synthesis of polyaniline on templates of anodic aluminum oxide nanomembranes and laser-induced deposition (LID) of Ag NPs directly on the pore walls. The proposed method allows for the formation of structures with a high aspect ratio of the pores, topological ordering and uniformity of properties throughout the sample, and a high specific surface area. For the developed structures, we demonstrated their effectiveness as non-enzymatic electrochemical sensors on glucose in a concentration range crucial for medical applications. The obtained systems possess high potential for miniaturization and were applied to glucose detection in real objects-laboratory rat blood plasma.

7.
Sensors (Basel) ; 23(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679625

RESUMO

This paper presents the first results of a study of the LH transition on the new spherical Globus-M2 tokamak using the Doppler backscattering (DBS) diagnostic. New data characterizing the H-mode of discharges with higher values of the plasma parameters, such as magnetic field Bt up to 0.9 T and plasma current Ip up to 450 kA, were collected and analyzed. An upgraded neutral beam injection (NBI) system was used to initiate the LH transition. DBS allows the measurement of the poloidal rotation velocity and the turbulence amplitude of the plasma. The multi-frequency DBS system installed on Globus-M2 can simultaneously collect data in different areas spanning from the separatrix to the plasma core. This allowed for the radial profiles of the rotation velocity and electric field to be calculated before and after the LH transition. In addition, the values and temporal evolution of the velocity shear were obtained. The associated turbulence suppression after the transition to the H-mode was investigated using DBS.


Assuntos
Líquidos Corporais , Eletricidade , Campos Magnéticos , Plasma , Rotação
8.
Materials (Basel) ; 15(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35744332

RESUMO

The temporal nature of static and dynamic deformation of fibre metal laminates is discussed here. The aim of the study is to verify the proposed innovate model using layered composites. The modified relaxation model is based on the earlier formulated plasticity relaxation model for homogeneous materials. The proposed relaxation model makes it possible to describe the deformation of the layered composites from elastic to irreversible deformation, finalised by the failure moment. The developed approach allows us to consider the effects of the transition from static to dynamic loading. This means that the model-calculated dynamic limiting characteristics of the metal and the strength of brittle materials will have a determining character, depending on the loading history. The verification of the model using a glass fibre reinforced aluminium composite, glass fibre reinforced titanium composite, carbon fibre reinforced aluminium composite, and Kevlar fibre reinforced aluminium composite with different thickness ratios between metal and polymer layers is given. It is shown that the theoretical deformation curves of the metal composites at the various strain rates, finalised by brittle fracture of the polymer layers or continued irreversible deformation of remaining unbroken metal layers with destroyed polymer (fibre/epoxy) layers, are predicted. Based on the same structural-temporal parameters for five (Ti/GFRP (0/90)/Ti/GFRP(90/0)/Ti) and three (Ti/GFRP(0/90/90/0)/Ti) layers glass fibre reinforced titanium composites and the polymer layers, one-stage and two-stage stress drops during the irreversible deformation of the composite under static and dynamic loading are simulated. The change of the multi-stage fracture of the composite from static to dynamic loading and the fracture characteristic times of the polymer (100 s and 15,400 s) and the metal (8.4 ms) are correlated. Continued plastic deformation of the composite after fracture of the polymer layers is related with different values of the characteristic relaxation times of the polymer (fibre/epoxy) and the metal layers.

9.
Nanomaterials (Basel) ; 13(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36615998

RESUMO

We present an efficient and easily implemented approach for creating stable electrocatalytically active nanocomposites based on polyaniline (PANI) with metal NPs. The approach combines in situ synthesis of polyaniline followed by laser-induced deposition (LID) of Ag, Pt, and AgPt NPs. The observed peculiarity of LID of PANI is the role of the substrate during the formation of multi-metallic nanoparticles (MNP). This allows us to solve the problem of losing catalytically active particles from the electrode's surface in electrochemical use. The synthesized PANI/Ag, PANI/Pt, and PANI/AgPt composites were studied with different techniques, such as SEM, EDX, Raman spectroscopy, and XPS. These suggested a mechanism for the formation of MNP on PANI. The MNP-PANI interaction was demonstrated, and the functionality of the nanocomposites was studied through the electrocatalysis of the hydrogen evolution reaction. The PANI/AgPt nanocomposites demonstrated both the best activity and the most stable metal component in this process. The suggested approach can be considered as universal, since it can be extended to the creation of electrocatalytically active nanocomposites with various mono- and multi-metallic NPs.

10.
Materials (Basel) ; 14(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207824

RESUMO

The influence of background ultrasonic field on the ultimate dynamic strength of adhesive joints is studied using fracture mechanics analysis. Winkler foundation-type models are applied to describe the cohesion zone, and the incubation time fracture criterion is used. The challenging task is to study whether relatively weak ultrasound is able to decrease the threshold values of the external impact load depending on a joint model, such as an "elastic membrane" or "beam" approximation, and various boundary conditions at the ends. The specific task was to investigate the case of short pulse loading through application of time-dependent fracture criterion instead of the conventional principle of critical stress. Three different load cases, namely, step constant force, dynamic pulse, and their combination with ultrasonic vibrations, were also studied. The analytical solution to the problem demonstrates that background vibrations at certain frequencies can significantly decrease threshold values of fracture impact load. Specific calculations indicate that even a weak background sonic field is enough to cause a significant reduction in the threshold amplitude of a dynamic short pulse load. Additionally, non-monotonic dependency of threshold amplitude on pulse duration for weak background field was observed, which demonstrates the existence of optimal regimes of impact energy input. Moreover, this phenomenon does not depend on the way in which the beam edges mount, whether they are clamped or hinged, and it could be applied for micro-electro-mechanical switch design processes as an additional tool to control operational regimes.

11.
Micromachines (Basel) ; 12(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808563

RESUMO

Overhang provides a simple but effective way of coupling (sub)structures, which has been widely adopted in the applications of optomechanics, electromechanics, mass sensing resonators, etc. Despite its simplicity, an overhanging structure demonstrates rich and complex dynamics such as mode splitting, localization and eigenfrequency veering. When an eigenfrequency veering occurs, two eigenfrequencies are very close to each other, and the error associated with the numerical discretization procedure can lead to wrong and unphysical computational results. A method of computing the eigenfrequency of two overhanging beams, which involves no numerical discretization procedure, is analytically derived. Based on the method, the mode localization and eigenfrequency veering of the overhanging beams are systematically studied and their variation patterns are summarized. The effects of the overhang geometry and beam mechanical properties on the eigenfrequency veering are also identified.

12.
Nanomaterials (Basel) ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35010096

RESUMO

Multimetallic plasmonic systems usually have distinct advantages over monometallic nanoparticles due to the peculiarity of the electronic structure appearing in advanced functionality systems, which is of great importance in a variety of applications including catalysis and sensing. Despite several reported techniques, the controllable synthesis of multimetallic plasmonic nanoparticles in soft conditions is still a challenge. Here, mono-, bi- and tri-metallic nanoparticles were successfully obtained as a result of a single step laser-induced deposition approach from monometallic commercially available precursors. The process of nanoparticles formation is starting with photodecomposition of the metal precursor resulting in nucleation and the following growth of the metal phase. The deposited nanoparticles were studied comprehensively with various experimental techniques such as SEM, TEM, EDX, XPS, and UV-VIS absorption spectroscopy. The size of monometallic nanoparticles is strongly dependent on the type of metal: 140-200 nm for Au, 40-60 nm for Ag, 2-3 nm for Pt. Bi- and trimetallic nanoparticles were core-shell structures representing monometallic crystallites surrounded by an alloy of respective metals. The formation of an alloy phase took place between monometallic nanocrystallites of different metals in course of their growth and agglomeration stage.

13.
Materials (Basel) ; 14(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375131

RESUMO

Surfaces functionalized with metal nanoparticles (NPs) are of great interest due to their wide potential applications in sensing, biomedicine, nanophotonics, etc. However, the precisely controllable decoration with plasmonic nanoparticles requires sophisticated techniques that are often multistep and complex. Here, we present a laser-induced deposition (LID) approach allowing for single-step surface decoration with NPs of controllable composition, morphology, and spatial distribution. The formation of Ag, Pt, and mixed Ag-Pt nanoparticles on a substrate surface was successfully demonstrated as a result of the LID process from commercially available precursors. The deposited nanoparticles were characterized with SEM, TEM, EDX, X-ray diffraction, and UV-VIS absorption spectroscopy, which confirmed the formation of crystalline nanoparticles of Pt (3-5 nm) and Ag (ca. 100 nm) with plasmonic properties. The advantageous features of the LID process allow us to demonstrate the spatially selective deposition of plasmonic NPs in a laser interference pattern, and thereby, the formation of periodic arrays of Ag NPs forming diffraction grating.

14.
Nanomaterials (Basel) ; 10(7)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679699

RESUMO

Until recently, planar carbonaceous structures such as graphene did not show any birefringence under normal incidence. In contrast, a recently reported novel orthorhombic carbonaceous structure with metal nanoparticle inclusions does show intrinsic birefringence, outperforming other natural orthorhombic crystalline materials. These flake-like structures self-assemble during a laser-induced growth process. In this article, we explore the potential of this novel material and the design freedom during production. We study in particular the dependence of the optical and geometrical properties of these hybrid carbon-metal flakes on the fabrication parameters. The influence of the laser irradiation time, concentration of the supramolecular complex in the solution, and an external electric field applied during the growth process are investigated. In all cases, the self-assembled metamaterial exhibits a strong linear birefringence in the visible spectral range, while the wavelength-dependent attenuation was found to hinge on the concentration of the supramolecular complex in the solution. By varying the fabrication parameters one can steer the shape and size of the flakes. This study provides a route towards fabrication of novel hybrid carbon-metal flakes with tailored optical and geometrical properties.

15.
Materials (Basel) ; 13(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878166

RESUMO

Multilayer Co/Pt films with perpendicular magnetic anisotropy are irradiated by focused a He+ ion beam to locally reduce the anisotropy value. The irradiated spots with the diameters of 100 and 200 nm are arranged in square lattices with the periods of 200 and 300 nm. The formation of nonuniform magnetic states within the spots was observed by magnetic force microscopy methods. We use the concentric distribution of the irradiation fluence within the spot to obtain the radial modulation of the anisotropy constant. This allows us to induce magnetic skyrmions during magnetization reversal of the system. The skyrmions remained stable at zero external magnetic field at room temperature. Magnetization hysteresis loops of the samples were investigated by magnetooptical methods and the results are in good agreement with micromagnetic simulations.

16.
Inorg Chem ; 57(16): 9779-9781, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30080026

RESUMO

Scandium fluoride (ScF3) microtubes with nanoscale wall thickness were for the first time successfully synthesized by an interface-assisted technique at the surface of a scandium nitrate aqueous solution without the addition of any surfactant as a result of interaction with hydrofluoric acid from the gaseous phase in only 30 min. X-ray diffraction analysis, scanning electron microscopy, helium ionic microscopy, transmission electron microscopy (TEM), and high-resolution TEM (HRTEM) were used to examine the morphology and crystal structure of ScF3 microtubes. The results show that the ScF3 microtube is single-crystalline and has a hexagonal structure. A hypothetical model of thin-walled microtube formation is proposed.

17.
ChemSusChem ; 10(18): 3644-3651, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28745440

RESUMO

Nanotubular iron(III) oxide electrodes are optimized for catalytic efficiency in the water oxidation reaction at neutral pH. The nanostructured electrodes are prepared from anodic alumina templates, which are coated with Fe2 O3 by atomic layer deposition. Scanning helium ion microscopy, X-ray diffraction, and Raman spectroscopy are used to characterize the morphologies and phases of samples submitted to various treatments. These methods demonstrate the contrasting effects of thermal annealing and electrochemical treatment. The electrochemical performances of the corresponding electrodes under dark conditions are quantified by steady-state electrolysis and electrochemical impedance spectroscopy. A rough and amorphous Fe2 O3 with phosphate incorporation is critical for the optimization of the water oxidation reaction. For the ideal pore length of 17 µm, the maximum catalytic turnover is reached with an effective current density of 140 µA cm-2 at an applied overpotential of 0.49 V.


Assuntos
Desenho de Fármacos , Condutividade Elétrica , Compostos Férricos/química , Oxigênio/química , Catálise , Eletroquímica , Eletrodos , Processos Fotoquímicos , Porosidade
18.
Sci Rep ; 6: 36878, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27857188

RESUMO

Nucleus is a highly compartmentalized part of the cell where the key processes of genome functionality are realized through the formation of non-membranous nuclear domains. Physically nuclear domains appear as liquid droplets with different viscosity stably maintained throughout the interphase or during the long diplotene stage of meiosis. Since nuclear body surface represents boundary between two liquid phases, the ultrastructural surface topography of nuclear domains is of an outstanding interest. The aim of this study was to examine ultrathin surface topography of the amphibian and avian oocyte nuclear structures such as lampbrush chromosomes, nucleoli, histone-locus bodies, Cajal body-like bodies, and the interchromatin granule clusters via low-voltage scanning electron microscopy. Our results demonstrate that nuclear bodies with similar molecular composition may differ dramatically in the surface topography and vice versa, nuclear bodies that do not share common molecular components may possess similar topographical characteristics. We also have analyzed surface distribution of particular nuclear antigens (double stranded DNA, coilin and splicing snRNA) using indirect immunogold labeling with subsequent secondary electron detection of gold nanoparticles. We suggest that ultrastructural surface morphology reflects functional status of a nuclear body.


Assuntos
Núcleo Celular/ultraestrutura , Cromossomos/ultraestrutura , Corpos Enovelados/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Oócitos/ultraestrutura , Anfíbios , Animais , Aves , Propriedades de Superfície
19.
Sci Technol Adv Mater ; 17(1): 274-284, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877880

RESUMO

We have studied the stability of the resistive switching process in the Al/(In2O3)0.9(SnO2)0.1/TiO2 assembly grown by atomic layer deposition. Besides electrical characterization the effect of electric field on the atomic electronic structure of the TiO2 layer was studied using near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The region of the current instability in the I-V characteristics was revealed. Presumably this current instability is supported by the amorphous structure of the TiO2 film but is initiated by the surface morphology of the Al substrate. A formation of the O2 molecules was established which occurs specifically in the region of the current instability that is a result of electrical Joule heating manifestation.

20.
Beilstein J Nanotechnol ; 6: 1125-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26171289

RESUMO

Reflection ion microscopy (RIM) is a technique that uses a low angle of incidence and scattered ions to form an image of the specimen surface. This paper reports on the development of the instrumentation and the analysis of the capabilities and limitations of the scanning RIM in a helium ion microscope (HIM). The reflected ions were detected by their "conversion" to secondary electrons on a platinum surface. An angle of incidence in the range 5-10° was used in the experimental setup. It was shown that the RIM image contrast was determined mostly by surface morphology but not by the atomic composition. A simple geometrical analysis of the reflection process was performed together with a Monte Carlo simulation of the angular dependence of the reflected ion yield. An interpretation of the RIM image formation and a quantification of the height of the surface steps were performed. The minimum detectable step height was found to be approximately 5 nm. RIM imaging of an insulator surface without the need for charge compensation was successfully demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA