Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Trace Elem Med Biol ; 83: 127372, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38176318

RESUMO

INRODUCTION: Cobalt (Co) is known to interfere with iron (Fe) metabolism that is essential for differentiating male germ cells. Our aim was to study the effect of developmental chronic cobalt exposure on mouse testis through changes in iron homeostasis in adulthood. METHODS: Pregnant ICR mice were exposed to 75 mg (low dose) or 125 mg (high dose)/kg b.w. cobalt chloride (CoCl2) with drinking water for 3 days before delivery and treatment continued until postnatal day 90 of the pups. Age-matched control animals obtained regular tap water. Testes of control and Co-treated mice were processed for immunohistochemistry and inductively coupled plasma mass spectrometry. Sperm count was performed. RESULTS: Chronic CoCl2 administration resulted in significant dose-dependent Co accumulation in sera and testes of the exposed mice. Fe content also showed a significant increase in sera and testes compared to the untreated controls. Surprisingly, testes of low dose-treated mice had ∼ 2.7-fold higher Fe content compared to those exposed to the high dose. A significant dose-dependent reduction in relative testis weight by 18.8% and by 37.7% was found after treatment with low and high dose CoCl2, respectively was found. Our study demonstrated that developmental chronic exposure to CoCl2 affected cellular composition of the testis manifested by germ cell loss and low sperm count, accompanied by altered androgen response in Sertoli cells (loss of stage-specific expression of androgen receptor). A possible mechanism involved is iron accumulation in the testis that was associated with altered ferroportin-hepcidin localization in seminiferous tubules depleted in germ cells. As a protective mechanism for germ cells in condition of iron excess, ferroportin was distributed in Sertoli cells around elongating spermatids. Similar changes in expression of transferrin receptor 1 (TfR1) and divalent metal transporter 1 (DMT1) implied that both factors of testicular Fe homeostasis are closely related. Outside the seminiferous tubules, Leydig cells localized ferroportin, hepcidin, DMT1 and TfR1 thus they could be considered as a main site for iron metabolism. CONCLUSION: Our data suggest that Co exerts its effects on the testis by indirect mechanism possibly through alteration in Fe homeostasis.


Assuntos
Hepcidinas , Testículo , Gravidez , Feminino , Masculino , Camundongos , Animais , Hepcidinas/metabolismo , Camundongos Endogâmicos ICR , Sêmen/metabolismo , Cobalto/farmacologia , Cobalto/metabolismo , Ferro/metabolismo
2.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769197

RESUMO

Lead (Pb) is a highly toxic heavy metal that has deleterious effects on the central nervous system. This study aimed to investigate the effects of salinomycin (Sal) and deferiprone (DFP) on brain morphology and on the content of some essential elements in Pb-exposed mice. Adult male Institute of Cancer Research (ICR) mice were exposed to a daily dose of 80 mg/kg body weight ( b.w.) Pb(II) nitrate for 14 days and subsequently treated with Sal (16 mg/kg b.w.) or DFP (19 mg/kg b.w.) for another 14 days. At the end of the experimental protocol, the brains were processed for histological and inductively coupled plasma mass spectrometry (ICP-MS) analyses. Pb exposure resulted in a 50-fold increase in Pb concentration, compared with controls. Magnesium (Mg) and phosphorus (P) were also significantly increased by 22.22% and 17.92%, respectively. The histological analysis of Pb-exposed mice revealed brain pathological changes with features of neuronal necrosis. Brain Pb level remained significantly elevated in Sal- and DFP-administered groups (37-fold and 50-fold, respectively), compared with untreated controls. Treatment with Sal significantly reduced Mg and P concentrations by 22.56% and 18.38%, respectively, compared with the Pb-exposed group. Administration of Sal and DFP ameliorated brain injury in Pb-exposed mice and improved histological features. The results suggest the potential application of Sal and DFP for treatment of Pb-induced neurotoxicity.


Assuntos
Chumbo , Piranos , Masculino , Camundongos , Animais , Deferiprona , Chumbo/toxicidade , Piranos/farmacologia , Encéfalo
3.
J Trace Elem Med Biol ; 74: 127062, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35985070

RESUMO

INTRODUCTION: Cadmium (Cd) is а hazardous multi-organ toxin. In this study, we provide the first results about the effect of oral administration of deferiprone (DFP) on Cd accumulation and on the homeostasis of essential elements in the brain of Cd-exposed mice. METHODS: Adult Institute of Cancer Research (ICR) male mice were randomized into four experimental groups: untreated controls - administered distilled water for 28 days; Cd-exposed group - exposed to 18 mg/kg body weight (b.w.) Cd(II) acetate for 14 days followed by the administration of distilled water for two weeks; Cd + DFP (low dose) - Cd-intoxicated mice subsequently treated with 19 mg/kg b.w. DFP for two weeks; and Cd + DFP (high dose) - Cd-exposed mice administered high-dose DFP (135 mg/kg b.w.) for 14 days. Brains were subjected to inductively coupled plasma-mass spectrometry (ICP-MS) and histological analysis. RESULTS: The results revealed that exposure of mice to Cd for 14 days significantly increased Cd concentration and significantly decreased magnesium (Mg), phosphorus (P), and zinc (Zn) contents in the brain compared to untreated controls. This effect was accompanied by necrotic-degenerative changes in both the cerebrum and cerebellum. Oral administration of low-dose DFP to Cd-exposed mice decreased the concentration of the toxic metal in the brain by 16.37% and restored the concentration of the essential elements to normal control values. Histological analysis revealed substantially improved cerebral and cerebellar histoarchitectures. In contrast, oral administration of high-dose DFP increased Cd content and significantly decreased selenium (Se) concentration in the brain. Necrotic neurons and Purkinje cells were still observed in the cerebral and cerebellar cortices. CONCLUSION: The results demonstrated that oral administration of DFP at low doses has a better therapeutic potential for the treatment of Cd-induced brain damage compared to high doses.


Assuntos
Água Potável , Selênio , Animais , Masculino , Camundongos , Acetatos/farmacologia , Encéfalo , Cádmio , Deferiprona/farmacologia , Homeostase , Magnésio/farmacologia , Fósforo , Selênio/farmacologia , Zinco/farmacologia
4.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457186

RESUMO

Lead (Pb) exposure induces severe nephrotoxic effects in humans and animals. Herein, we compare the effects of two chelating agents, salinomycin and deferiprone, on Pb-induced renal alterations in mice and in the homeostasis of essential elements. Adult male mice (Institute of Cancer Research (ICR)) were randomized into four groups: control (Ctrl)-untreated mice administered distilled water for 28 days; Pb-exposed group (Pb)-mice administered orally an average daily dose of 80 mg/kg body weight (BW) lead (II) nitrate (Pb(NO3)2) during the first two weeks of the experimental protocol followed by the administration of distilled water for another two weeks; salinomycin-treated (Pb + Sal) group-Pb-exposed mice, administered an average daily dose of 16 mg/kg BW salinomycin for two weeks; deferiprone-treated (Pb + Def) group-Pb-exposed mice, administered an average daily dose of 20 mg/kg BW deferiprone for 14 days. The exposure of mice to Pb induced significant accumulation of the toxic metal in the kidneys and elicited inflammation with leukocyte infiltrations near the glomerulus. Biochemical analysis of the sera revealed that Pb significantly altered the renal function markers. Pb-induced renal toxicity was accompanied by a significant decrease in the endogenous renal concentrations of phosphorous (P), calcium (Ca), copper (Cu) and selenium (Se). In contrast to deferiprone, salinomycin significantly improved renal morphology in Pb-treated mice and decreased the Pb content by 13.62% compared to the Pb-exposed group. There was also a mild decrease in the renal endogenous concentration of magnesium (Mg) and elevation of the renal concentration of iron (Fe) in the salinomycin-treated group compared to controls. Overall, the results demonstrated that salinomycin is a more effective chelating agent for the treatment of Pb-induced alterations in renal morphology compared to deferiprone.


Assuntos
Água Potável , Chumbo , Animais , Quelantes , Deferiprona/farmacologia , Homeostase , Chumbo/toxicidade , Masculino , Camundongos , Piranos
5.
Food Chem Toxicol ; 149: 111973, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33421458

RESUMO

The objective of the present study was to assess the impact of cobalt (Co) exposure on tissue distribution of iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn), as well as serum hepcidin levels in immature mice (18, 25, 30 days). Pregnant mice were exposed to 75 mg/kg b.w. cobalt chloride (CoCl2 × 6H2O) with drinking water starting from 3 days before delivery and during lactation. At weaning (day 25) the offspring were separated and housed in individual cages with subsequent exposure to 75 mg/kg b.w. CoCl2 until 30 days postnatally. Evaluation of tissue metal levels was performed by an inductively coupled plasma-mass spectrometry (ICP-MS). Serum hepcidin level was assayed by enzyme linked immunosorbent assay (ELISA). Cobalt exposure resulted in a time- and tissue-dependent increase in Co levels in kidney, spleen, liver, muscle, erythrocytes, and serum on days 18, 25, and 30. In parallel with increasing Co levels, CoCl2 exposure resulted in a significant accumulation of Cu, Fe, Mn, and Zn in the studied tissues, with the effect being most pronounced in 25-day-old mice. Cobalt exposure significantly increased serum hepcidin levels only in day18 mice. The obtained data demonstrate that Co exposure may alter essential metal metabolism in vivo.


Assuntos
Cobalto/toxicidade , Metais/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Envelhecimento , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Cobalto/farmacocinética , Feminino , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Metais/toxicidade , Camundongos , Camundongos Endogâmicos ICR , Músculo Esquelético/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Baço/efeitos dos fármacos , Baço/patologia
6.
Biol Trace Elem Res ; 199(2): 588-593, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32405686

RESUMO

The wide use of cobalt (Co) in food, industry, and medical devices requires full elucidation of its biological effects on tissues and organs. The aim was to assess serum metabolic alterations in immature mice after subchronic exposure to CoCl2. Pregnant ICR mice were subjected to a daily dose of 75 mg cobalt chloride/kg body weight (CoCl2x6H2O) 2-3 days before they gave birth, and treatment continued until days 25 and 30 after delivery. The compound was dissolved in and obtained with regular tap water. ICP-DRC-MS analysis showed significantly elevated serum Co2+ and diverse alterations in metabolic parameters of 25- and 30-day-old pups after exposure to CoCl2. Cholesterol and urea levels were significantly elevated in day 25 mice while HDL-C and LDL-C were reduced. In day 30, Co-exposed mice LDL-C and triglycerides were significantly increased while the total cholesterol level remained unchanged. Alkaline phosphatase was significantly reduced in day 25 Co-exposed mice. Blood glucose level of Co-exposed mice remained close to the untreated controls. Total protein content was slightly increased in day 30 mice. Co-exposure reduced albumin content and albumin/globulin ratio but increased significantly globulin content. Co administration showed strong correlation with cholesterol, urea, and HDL-C in both day 25 and 30 mice. Inverse correlation was found with alkaline phosphatase and albumin for day 25 and with triglycerides, globulin, and total protein content in day 30 Co-exposed mice. Subchronic CoCl2 exposure of immature mice induced significant changes in key metabolic parameters suggesting possible further disturbances in energy metabolism, osteogenesis, and reproduction.


Assuntos
Colesterol , Cobalto , Animais , Cobalto/toxicidade , Feminino , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Triglicerídeos
7.
Environ Sci Pollut Res Int ; 28(6): 6784-6795, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33006102

RESUMO

In this study, we compare the effects of deferiprone (Def) and tetraethylammonium salt of salinomycinic acid (Sal) on lead (Pb)-induced toxicity in testes of Pb-exposed mice. Mature male ICR mice were allocated into four groups as follows: untreated control mice (ctrl)-received distilled water for 4 weeks; Pb-exposed mice (Pb)-subjected to 14-day Pb (II) nitrate administration at dose 80 mg/kg body weight (b.w.); Pb + Def group-Pb-exposed mice, treated with 20 mg/kg b.w. Def for 2 weeks; and Pb + Sal group-Pb-intoxicated mice, treated with 16 mg/kg b.w. Sal for 14 days. The results demonstrated that Pb exposure significantly increased blood and testicular Pb concentrations, decreased testicular calcium (Ca) content, significantly elevated testicular levels of magnesium (Mg), zinc (Zn), and selenium (Se) but did not significantly affect the endogenous contents of phosphorous (P) and iron (Fe) compared with untreated controls. Pb intoxication induced disorganization of the seminiferous epithelium. Def or Sal administration reduced blood Pb and testicular Pb concentrations in Pb-exposed mice compared with the Pb-intoxicated group. Mg, Zn, and Se concentrations in testes of Pb-exposed mice, treated with Def or Sal, remained higher compared with the untreated controls. Sal significantly increased testicular P concentration compared with untreated controls and significantly elevated the testicular Ca and Fe concentrations compared with the toxic control group. Both chelating agents improved testicular morphology to a great extent. The results demonstrate the potential of both compounds as antidotes for treatment of Pb-induced impairment of male reproductive function.


Assuntos
Chumbo , Testículo , Animais , Deferiprona , Chumbo/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos ICR , Tetraetilamônio
8.
Chem Biol Interact ; 329: 109217, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32750324

RESUMO

Developing brain is very sensitive to the influence of environmental factors during gestation and the neonatal period. The aim of the study is to assess cobalt and iron accumulation in the brain as well as changes in the expression of iron-regulatory proteins transferrin receptor 1, hepcidin, and ferroportin in suckling mice. Perinatal exposure to cobalt chloride increased significantly cobalt content in brain tissue homogenates of 18-day-old (d18) and 25-day-old (d25) mice inducing alterations in brain iron homeostasis. Higher degree of transferrin receptor 1 expression was demonstrated in cobalt chloride-exposed mice with no substantial changes between d18 and d25 mice. A weak ferroportin expression was found in 18-day-old control and cobalt-treated mouse brain. Cobalt exposure of d25 mice resulted in increased ferroportin expression in brain compared to the untreated age-matched control group. Hepcidin level in cobalt-exposed groups was decreased in d18 mice and slightly increased in d25 mice. The obtained data contribute for the better understanding of metal toxicity impact on iron homeostasis in the developing brain with further possible implications in neurodegeneration.


Assuntos
Encéfalo/metabolismo , Cobalto/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas Reguladoras de Ferro/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cobalto/metabolismo , Feminino , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/metabolismo , Proteínas Reguladoras de Ferro/genética , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
9.
Biol Trace Elem Res ; 194(2): 423-431, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31273683

RESUMO

The objective of the present study was to elucidate the effect of perinatal cobalt chloride (CoCl2) exposure on extramedullary erythropoiesis in suckling mice in relation to iron (Fe) content and transferrin receptor (TfR) expression. Pregnant ICR mice were subjected to a daily dose of 75 mg CoCl2/kg body weight 2-3 days prior and 18 days after delivery. Co exposure significantly increased erythrocyte count (RBC), and reduced the erythrocytic parameters mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) in the offspring. Total iron-binding capacity (TIBC) was decreased while bilirubin values were ~ 1.2-fold higher in the metal-exposed mice. Perinatal CoCl2 treatment also induced pathohistological changes in target organs (spleen, liver, and kidneys) as altered organ weight indices, leukocyte infiltration, abundant Kupffer cells in the liver, increased mesangial cellularity, and reduced capsular space in the kidney. CoCl2 administration induced significant 68-, 3.8-, 41.3-, and 162-fold increase of Co content in the kidney, spleen, liver, and RBC, respectively. Fe content in the target organs of CoCl2-treated mice was also significantly elevated. Immunohistochemical analysis demonstrated that TfR1 was well expressed in the renal tubules, hepatocytes, the red pulp, and marginal zone of white pulp in the spleen. TfR2 showed similar expression pattern, but its expression was stronger in the spleen and liver samples of Co-treated mice compared with that of the untreated controls. The results demonstrate that exposure to CoCl2 during late pregnancy and early postnatal period affects body and organ weights and alters hematological and biochemical parameters, iron content, and TfR expression in target organs.


Assuntos
Eritropoese , Transferrina , Animais , Cobalto , Feminino , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Receptores da Transferrina
10.
J Trace Elem Med Biol ; 58: 126431, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31759232

RESUMO

BACKGROUND AND AIM: Sodium nitrite (NaNO2) is an inorganic salt with numerous applications in a variety of industries, as well as in medicine. Nevertheless, exposure to high levels of NaNO2 is toxic for animals and humans. Sodium nitrite intoxication is shown to decrease the activity of major antioxidant defence enzymes which is dependent on the maintenance of specific ion equilibrium. The aim of the present study was to investigate the effect of acute NaNO2 intoxication on the content of the essential metals iron (Fe), calcium (Ca) and zinc (Zn) in mouse spleen. METHODS: Mature male ICR mice were divided into four groups and subjected to acute NaNO2 exposure by a single intraperitoneal injection of 120 mg/kg body weight. Animals in each group were sacrificed at certain time interval after treatment (1 h, 5 h, 1 day and 2 days). Spleens were excised and processed for atomic absorption spectrometry analysis of Fe, Ca and Zn content. RESULTS: At the first hour after treatment, a decrease in Fe and Ca levels was observed. One day following NaNO2 administration, Zn concentration reached its lowest value and Ca levels remained lower, compared to the untreated controls. In contrast, Fe concentration increased on the first and second day after treatment. CONCLUSION: The results of the present study demonstrate that acute NaNO2 intoxication provokes changes in the endogenous levels of Fe, Ca and Zn in mouse spleen. These findings suggest disruption of the ionic balance and impact on the activity of antioxidant defence enzymes.


Assuntos
Metais/metabolismo , Nitrito de Sódio/toxicidade , Baço/metabolismo , Doença Aguda , Animais , Cálcio/metabolismo , Ferro/metabolismo , Masculino , Camundongos Endogâmicos ICR , Espectrofotometria Atômica , Baço/efeitos dos fármacos , Zinco/metabolismo
11.
J Trace Elem Med Biol ; 58: 126429, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31760328

RESUMO

BACKGROUND AND AIM: Environmental lead (Pb) exposure damages the lungs and is a risk factor for death from cardiovascular disease. Pb induces toxicity by a mechanism, which involves alteration of the essential elements homeostasis. In this study we compare the effects of salinomycin (Sal), monensin (Mon) and meso-2,3-dimercaptosuccinic acid (DMSA) on the concentrations of lead (Pb), calcium (Ca), copper (Cu), iron (Fe) and zinc (Zn) in the lungs and heart of lead-exposed mice. METHODS: Sixty days old male ICR mice were divided into five groups: control (Ctrl) - untreated mice obtained distilled water for 28 days; Pb-intoxicated group (Pb) - exposed to 80 mg/kg body weight (BW) Pb(NO3)2 during the first 14 days of the experimental protocol; DMSA-treated (Pb + DMSA) - Pb-exposed mice, subjected to treatment with an average daily dose of 20 mg/kg BW DMSA for two weeks; Monensin-treated (Pb + Mon) - Pb-exposed mice, obtained an average daily dose of 20 mg/kg BW tetraethylammonium salt of monensic acid for 14 days; Pb + Sal - Pb-exposed mice, treated with an average daily dose of 20 mg/kg BW tetraethylammonium salt of salinomycinic acid for two weeks. On the 29th day of the experiment the samples (lungs and heart) were taken for atomic absorption analysis. RESULTS: The results revealed that exposure of mice to Pb for 14 days significantly increased the concentration of the toxic metal in both organs and elevated the cardiac concentrations of Ca, Cu and Fe compared to untreated mice. Pb exposure diminished the lung concentrations of Ca and Zn compared to that of untreated controls. DMSA, monensin and salinomycin decreased the concentration of Pb in the lungs and heart. Among the tested chelating agents, only salinomycin restored the cardiac Fe concentration to normal control values. CONCLUSION: The results demonstrated the potential application of polyether ionophorous antibiotic salinomycin as antidote for treatment of Pb-induced toxicity in the lungs and heart. The possible complexation of the polyether ionophorous antibiotics with Ca(II) and Zn(II), which can diminish the endogenous concentrations of both ions in the lungs should be taken into account.


Assuntos
Intoxicação por Chumbo/metabolismo , Pulmão/metabolismo , Metais Pesados/metabolismo , Monensin/farmacologia , Miocárdio/metabolismo , Piranos/farmacologia , Succímero/farmacologia , Animais , Cálcio/metabolismo , Cobre/metabolismo , Ferro/metabolismo , Chumbo/metabolismo , Masculino , Camundongos Endogâmicos ICR , Zinco/metabolismo
12.
Interdiscip Toxicol ; 10(3): 107-113, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30174534

RESUMO

Cadmium (Cd) is a risk factor for neurodegenerative diseases. The purpose of this study was to compare the effects of meso-2,3-dimercaptosuccinic acid (DMSA) and the polyether ionophorous antibiotics monensin and salinomycin on Cd-induced neurodegenerative alterations in mice. The results show that subacute intoxication of mice with Cd (II) acetate (20 mg/kg body weight (BW) for 14 days) caused a significant accumulation of cadmium (Cd) in the brain. Treatment of Cd-exposed mice with DMSA (20 mg/kg BW for 14 days) significantly increased the Cd concentration in the brains compared to those of the Cd-treated group. However, administration of monensin (20 mg/kg BW for 14 days) or salinomycin (20 mg/kg BW for 14 days) significantly reduced the Cd concentration in the brains of Cd-treated mice compared to the toxic control group. Histopathological analysis of brain tissues from the Cd-treated mice revealed that Cd induced neuronal necrosis, characterized by many shrunken, darkly stained pyknotic neurons with prominent perineuronal spaces. Whereas monensin and salinomycin significantly reduced the adverse effects of Cd on brain morphology of Cd-treated mice, DMSA did not. Monensin slightly increased the copper and iron endogenous levels in the brains of Cd-exposed mice compared to those of the untreated mice. Salinomycin did not affect the concentrations of biometal ions in the brain of Cd-exposed mice compared to untreated controls. The results demonstrated salinomycin to be a better potential chelating agent for treatment of Cd-induced brain injury compared to DMSA and monensin.

13.
Acta Histochem ; 118(5): 496-504, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27263093

RESUMO

Hypoxic events are known to cause substantial damage to the hippocampus, cerebellum and striatum. The impact of hypoxic shock on other brain parts is not sufficiently studied. Recent studies show that tripeptidyl peptidase I (TPPI) activity in fish is altered after a hypoxic stress pointing out at a possible enzyme involvement in response to hypoxia. Similar studies are not performed in mammals. In this work, the effect of sodium nitrite-induced acute hypoxic shock on the rat brain was studied at different post-treatment periods. Morphological changes in cerebral cortex, cerebellum, medulla oblongata, thalamus, mesencephalon and pons were assessed using silver-copper impregnation for neurodegeneration. TPPI activity was biochemically assayed and localized by enzyme histochemistry. Although less vulnerable to oxidative stress, the studied brain areas showed different histopathological changes, such as neuronal loss and tissue vacuolization, dilatation of the smallest capillaries and impairment of neuronal processes. TPPI activity was strictly regulated following the hypoxic stress. It was found to increase 12-24h post-treatment, then decreased followed by a slow process of recovery. The enzyme histochemistry revealed a temporary enzyme deficiency in all types of neurons. These findings indicate a possible involvement of the enzyme in rat brain response to hypoxic stress.


Assuntos
Aminopeptidases/metabolismo , Encéfalo/enzimologia , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Serina Proteases/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Hipóxia Celular , Masculino , Microvasos/anatomia & histologia , Especificidade de Órgãos , Ratos Wistar , Tripeptidil-Peptidase 1
14.
J Toxicol Environ Health A ; 76(4-5): 304-10, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23514072

RESUMO

Lithium is extensively used in psychiatric practice for the prevention and treatment of manic-depressive disorders. However, neurotoxicity attributed to lithium salts within therapeutic doses was also reported in patients, manifested by transient or persistent neurological deficits. In this study, morphological changes were examined in rats treated acutely and chronically with lithium. Pathological changes were observed in different brain regions including cerebral cortex, cerebellum, medulla oblongata, mesencephalon, thalamus, and pons, using a silver-copper impregnation technique for neurodegeneration. Vacuolization of brain tissue with subsequent formation of spongiosis was the prominent morphological feature following lithium administration. The zones of spongiosis were irregularly distributed throughout the brain. More intensive compact areas with spongiform changes were found in the cerebral cortex and medulla oblongata. Less pronounced vacuolization was noted in the pons and thalamic region. The cerebellum and mesencephalon appeared least affected. Vacuolization in the cerebellar cortex was found at loci with Purkinje cells, but the classical picture of spongiosis was not apparent. Data indicate that both acute and chronic lithium intoxication accelerated neurodegenerative changes normally seen with normal brain aging.


Assuntos
Antimaníacos/toxicidade , Antipsicóticos/toxicidade , Encéfalo/efeitos dos fármacos , Lítio/toxicidade , Animais , Encéfalo/patologia , Esquema de Medicação , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA