Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genome Biol ; 20(1): 291, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856913

RESUMO

Accurate detection and genotyping of structural variations (SVs) from short-read data is a long-standing area of development in genomics research and clinical sequencing pipelines. We introduce Paragraph, an accurate genotyper that models SVs using sequence graphs and SV annotations. We demonstrate the accuracy of Paragraph on whole-genome sequence data from three samples using long-read SV calls as the truth set, and then apply Paragraph at scale to a cohort of 100 short-read sequenced samples of diverse ancestry. Our analysis shows that Paragraph has better accuracy than other existing genotypers and can be applied to population-scale studies.


Assuntos
Variação Estrutural do Genoma , Técnicas de Genotipagem , Genoma Humano , Humanos
2.
Bioinformatics ; 35(22): 4754-4756, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31134279

RESUMO

SUMMARY: We describe a novel computational method for genotyping repeats using sequence graphs. This method addresses the long-standing need to accurately genotype medically important loci containing repeats adjacent to other variants or imperfect DNA repeats such as polyalanine repeats. Here we introduce a new version of our repeat genotyping software, ExpansionHunter, that uses this method to perform targeted genotyping of a broad class of such loci. AVAILABILITY AND IMPLEMENTATION: ExpansionHunter is implemented in C++ and is available under the Apache License Version 2.0. The source code, documentation, and Linux/macOS binaries are available at https://github.com/Illumina/ExpansionHunter/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Repetições de Microssatélites , Software , Genótipo
3.
Bioinformatics ; 29(16): 2041-3, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23736529

RESUMO

SUMMARY: An ultrafast DNA sequence aligner (Isaac Genome Alignment Software) that takes advantage of high-memory hardware (>48 GB) and variant caller (Isaac Variant Caller) have been developed. We demonstrate that our combined pipeline (Isaac) is four to five times faster than BWA + GATK on equivalent hardware, with comparable accuracy as measured by trio conflict rates and sensitivity. We further show that Isaac is effective in the detection of disease-causing variants and can easily/economically be run on commodity hardware. AVAILABILITY: Isaac has an open source license and can be obtained at https://github.com/sequencing.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Variação Genética , Genoma Humano , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA