Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Adv Mater ; : e2403455, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723249

RESUMO

2D perovskites have received great attention recently due to their structural tunability and environmental stability, making them highly promising candidates for various applications by breaking property bottlenecks that affect established materials. However, in 2D perovskites, the complicated interplay between organic spacers and inorganic slabs makes structural analysis challenging to interpret. A deeper understanding of the structure-property relationship in these systems is urgently needed to enable high-performance tunable optoelectronic devices. Herein, this study examines how structural changes, from constant lattice distortion and variable structural evolution, modeled with both static and dynamic structural descriptors, affect macroscopic properties and ultimately device performance. The effect of chemical composition, crystallographic inhomogeneity, and mechanical-stress-induced static structural changes and corresponding electronic band variations is reported. In addition, the structure dynamics are described from the viewpoint of anharmonic vibrations, which impact electron-phonon coupling and the carriers' dynamic processes. Correlated carrier-matter interactions, known as polarons and acting on fine electronic structures, are then discussed. Finally, reliable guidelines to facilitate design to exploit structural features and rationally achieve breakthroughs in 2D perovskite applications are proposed. This review provides a global structural landscape of 2D perovskites, expected to promote the prosperity of these materials in emerging device applications.

2.
Adv Mater ; : e2310240, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708696

RESUMO

In the past years, an increasing number of experimental techniques have emerged to address the need to unveil the chemical, structural, and electronic properties of perovskite thin films with high vertical and lateral spatial resolutions. One of these is angle-resolved photoemission electron spectroscopy which can provide direct access to the electronic band structure of perovskites, with the aim of overcoming elusive and controversial information due to the complex data interpretation of purely optical spectroscopic techniques. This perspective looks at the information that can be gleaned from the direct measurement of the electronic band structure of single crystal perovskites and the challenges that remain to be overcame to extend this technique to heterogeneous polycrystalline metal halide perovskites.

3.
Nanoscale Adv ; 6(4): 1074-1083, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38356640

RESUMO

Semiconducting transition metal dichalcogenides are important optoelectronic materials thanks to their intense light-matter interaction and wide selection of fabrication techniques, with potential applications in light harvesting and sensing. Crucially, these applications depend on the lifetimes and recombination dynamics of photogenerated charge carriers, which have primarily been studied in monolayers obtained from labour-intensive mechanical exfoliation or costly chemical vapour deposition. On the other hand, liquid phase exfoliation presents a high throughput and cost-effective method to produce dispersions of mono- and few-layer nanosheets. This approach allows for easy scalability and enables the subsequent processing and formation of macroscopic films directly from the liquid phase. Here, we use transient absorption spectroscopy and spatiotemporally resolved pump-probe microscopy to study the charge carrier dynamics in tiled nanosheet films of MoS2 and WS2 deposited from the liquid phase using an adaptation of the Langmuir-Schaefer technique. We find an efficient photogeneration of charge carriers with lifetimes of several nanoseconds, which we ascribe to stabilisation at nanosheet edges. These findings provide scope for photocatalytic and photodetector applications, where long-lived charge carriers are crucial, and suggest design strategies for photovoltaic devices.

4.
Angew Chem Int Ed Engl ; 63(10): e202318557, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38189576

RESUMO

Chiral perovskites possess a huge applicative potential in several areas of optoelectronics and spintronics. The development of novel lead-free perovskites with tunable properties is a key topic of current research. Herein, we report a novel lead-free chiral perovskite, namely (R/S-)ClMBA2 SnI4 (ClMBA=1-(4-chlorophenyl)ethanamine) and the corresponding racemic system. ClMBA2 SnI4 samples exhibit a low band gap (2.12 eV) together with broad emission extending in the red region of the spectrum (∼1.7 eV). Chirality transfer from the organic ligand induces chiroptical activity in the 465-530 nm range. Density functional theory calculations show a Rashba type band splitting for the chiral samples and no band splitting for the racemic isomer. Self-trapped exciton formation is at the origin of the large Stokes shift in the emission. Careful correlation with analogous lead and lead-free 2D chiral perovskites confirms the role of the symmetry-breaking distortions in the inorganic layers associated with the ligands as the source of the observed chiroptical properties providing also preliminary structure-property correlation in 2D chiral perovskites.

5.
Adv Mater ; 36(1): e2305567, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37722700

RESUMO

Bandgap tunability of lead mixed halide perovskites (LMHPs) is a crucial characteristic for versatile optoelectronic applications. Nevertheless, LMHPs show the formation of iodide-rich (I-rich) phase under illumination, which destabilizes the semiconductor bandgap and impedes their exploitation. Here, it is shown that how I2 , photogenerated upon charge carrier trapping at iodine interstitials in LMHPs, can promote the formation of I-rich phase. I2 can react with bromide (Br- ) in the perovskite to form a trihalide ion I2 Br- (Iδ- -Iδ+ -Brδ- ), whose negatively charged iodide (Iδ- ) can further exchange with another lattice Br- to form the I-rich phase. Importantly, it is observed that the effectiveness of the process is dependent on the overall stability of the crystalline perovskite structure. Therefore, the bandgap instability in LMHPs is governed by two factors, i.e., the density of native defects leading to I2 production and the Br- binding strength within the crystalline unit. Eventually, this study provides rules for the design of chemical composition in LMHPs to reach their full potential for optoelectronic devices.

6.
J Am Chem Soc ; 145(51): 28111-28123, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38091498

RESUMO

The compositional tunability of 2D metal halide perovskites enables exploration of diverse semiconducting materials with different structural features. However, rationally tuning the 2D perovskite structures to target physical properties for specific applications remains challenging, especially for lead-free perovskites. Here, we study the effect of the interplay of the B-site (Ge, Sn, and Pb), A-site (cesium, methylammonium, and formamidinium), and spacer cations on the structure and optical properties of a new series of 2D Ruddlesden-Popper perovskites using the previously unreported spacer cation 4-bromo-2-fluorobenzylammonium (4Br2FBZ). We report eight new crystal structures and study the consequence of varying the B-site (Pb, Sn, Ge) and dimension (n = 1, 2, vs 3D). Dimension strongly influences local distortion and structural symmetry, and the increased octahedral tilting and lone pair effects in Ge perovskites lead to a polar n = 2 perovskite that exhibits second harmonic generation, (4Br2FBZ)2(Cs)Ge2I7. In contrast, the analogous Sn and Pb perovskites remain centrosymmetric, but the B-site metal influences the photoluminescence properties. The Pb perovskites exhibit broad, defect-mediated emission at low temperature, whereas the Sn perovskites show purely excitonic emission over the entire temperature range, but the carrier recombination dynamics depend on dimensionality and dark excitonic states. Wholistic understanding of these differences that arise based on cations and dimensionality can guide the rational materials design of 2D perovskites for targeting physical properties for optoelectronic applications based on the interplay of cations and the connectivity of the inorganic framework.

7.
ACS Energy Lett ; 8(12): 5170-5174, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38094751

RESUMO

We show for the first time DMSO-free tin-based perovskite solar cells with a self-assembled hole selective contact (MeO-2PACz). Our method provides reproducible and hysteresis-free devices with MeO-2PACz, having the best device PCE of 5.8 % with a VOC of 638 mV.

8.
J Phys Chem C Nanomater Interfaces ; 127(43): 21194-21203, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37937156

RESUMO

We present a study on the many-body exciton interactions in a Ruddlesden-Popper tin halide, namely, (PEA)2SnI4 (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by exciton many-body interactions and lattice fluctuations. We investigate the excitation-induced dephasing (EID) and observe a significant reduction of the dephasing time with increasing excitation density as compared to its lead counterpart (PEA)2PbI4, which we have previously reported in a separate publication [J. Chem. Phys.2020, 153, 164706]. Surprisingly, we find that the EID interaction parameter is four orders of magnitude higher in (PEA)2SnI4 than that in (PEA)2PbI4. This increase in the EID rate may be due to exciton localization arising from a more statically disordered lattice in the tin derivative. This is supported by the observation of multiple closely spaced exciton states and the broadening of the linewidth with increasing population time (spectral diffusion), which suggests a static disordered structure relative to the highly dynamic lead-halide. Additionally, we find that the exciton nonlinear coherent lineshape shows evidence of a biexcitonic state with low binding energy (<10 meV) not observed in the lead system. We model the lineshapes based on a stochastic scattering theory that accounts for the interaction with a nonstationary population of dark background excitations. Our study provides evidence of differences in the exciton quantum dynamics between tin- and lead-based Ruddlesden-Popper metal halides (RPMHs) and links them to the exciton-exciton interaction strength and the static disorder aspect of the crystalline structure.

9.
ACS Energy Lett ; 8(9): 3876-3882, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37705702

RESUMO

Halide alloying in tin-based perovskites allows for photostable bandgap tuning between 1.3 and 2.2 eV. Here, we elucidate how the band edge energetics and associated defect activity impact the optoelectronic properties of this class of materials. We find that by increasing the bromide:iodide ratio, a simultaneous destabilization of acceptor defects (tin vacancies and iodine interstitials) and stabilization of donor defects (iodine vacancies and tin interstitials) occurs, with strong changes arising for Br contents exceeding 50%. This translates into a decreased doping which is, however, accompanied by a higher density of nonradiative recombination channels. Films with high Br content show a high degree of disorder and trap state densities, with the best optoelectronic quality being found for Br contents of around 33%. These observations match the open circuit voltage trend of tin-based mixed halide perovskite solar cells, supporting the relevance of optoelectronic properties and chemistry of defects to optimize wide-bandgap tin perovskite devices.

10.
ACS Energy Lett ; 8(6): 2801-2808, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37324539

RESUMO

Bandgap tuning is a crucial characteristic of metal-halide perovskites, with benchmark lead-iodide compounds having a bandgap of 1.6 eV. To increase the bandgap up to 2.0 eV, a straightforward strategy is to partially substitute iodide with bromide in so-called mixed-halide lead perovskites. Such compounds are prone, however, to light-induced halide segregation resulting in bandgap instability, which limits their application in tandem solar cells and a variety of optoelectronic devices. Crystallinity improvement and surface passivation strategies can effectively slow down, but not completely stop, such light-induced instability. Here we identify the defects and the intragap electronic states that trigger the material transformation and bandgap shift. Based on such knowledge, we engineer the perovskite band edge energetics by replacing lead with tin and radically deactivate the photoactivity of such defects. This leads to metal halide perovskites with a photostable bandgap over a wide spectral range and associated solar cells with photostable open circuit voltages.

11.
Mater Adv ; 4(7): 1720-1730, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37026040

RESUMO

We investigate the effect of metal cation substition on the excitonic structure and dynamics in a prototypical Ruddlesden-Popper metal halide. Through an in-depth spectroscopic and theoretical analysis, we identify the presence of multiple resonances in the optical spectra of a phenethyl ammonium tin iodide, a tin-based RPMH. Based on ab initio calculations, we assign these resonances to distinct exciton series that originate from the splitting of the conduction band due to spin-orbit coupling. While the splitting energy in the tin based system is low enough to enable the observation of the higher lying exciton in the visible-range spectrum of the material, the higher splitting energy in the lead counterpart prevents the emergence of such a feature. We elucidate the critical role played by the higher lying excitonic state in the ultrafast carrier thermalization dynamics.

12.
Nanoscale ; 15(12): 5712-5719, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36880499

RESUMO

Metal halide perovskite nanocrystals (NCs) are promising for photovoltaic and light-emitting applications. Due to the softness of their crystal lattice, structural modifications have a critical impact on their optoelectronic properties. Here we investigate the size-dependent optoelectronic properties of CsPbI3 NCs ranging from 7 to 17 nm, employing temperature and pressure as thermodynamic variables to modulate the energetics of the system and selectively tune the interatomic distances. By temperature-dependent photoluminescence spectroscopy, we have found that luminescence quenching channels exhibit increased non-radiative losses and weaker exciton-phonon coupling in bigger particles, in turn affecting the luminescence efficiency. Through pressure-dependent measurements up to 2.5 GPa, supported by XRD characterization, we revealed a NC-size dependent solid-solid phase transition from the γ-phase to the δ-phase. Importantly, the optical response to these structural changes strongly depends on the size of the NC. Our findings provide an interesting guideline to correlate the size and structural and optoelectronic properties of CsPbI3 NCs, important for engineering the functionalities of this class of soft semiconductors.

13.
ACS Nano ; 16(12): 20671-20679, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36420860

RESUMO

Two-dimensional (2D) perovskites have been proposed as materials capable of improving the stability and surpassing the radiative recombination efficiency of three-dimensional perovskites. However, their luminescent properties have often fallen short of what has been expected. In fact, despite attracting considerable attention for photonic applications during the last two decades, lasing in 2D perovskites remains unclear and under debate. Here, we were able to improve the optical gain properties of 2D perovskite and achieve optically pumped lasing. We show that the choice of the spacer cation affects the defectivity and photostability of the perovskite, which in turn influences its optical gain. Based on our synthetic strategy, we obtain PEA2SnI4 films with high crystallinity and favorable optical properties, resulting in amplified spontaneous emission (ASE) with a low threshold (30 µJ/cm2), a high optical gain above 4000 cm-1 at 77 K, and ASE operation up to room temperature.

14.
Adv Sci (Weinh) ; 9(32): e2202795, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36109174

RESUMO

The prevalence of background hole doping in tin halide perovskites usually dominates their recombination dynamics. The addition of excess Sn halide source to the precursor solution is the most frequently used approach to reduce the hole doping and reveals photo-carrier dynamics related to defects activity. This study presents an experimental and theoretical investigation on defects under light irradiation in tin halide perovskites by combining measurements of photoluminescence with first principles computational modeling. It finds that tin perovskite thin films prepared with an excess of Sn halide sources exhibit an enhancement of the photoluminescence intensity over time under continuous excitation in inert atmosphere. The authors propose a model in which light irradiation promotes the annihilation of VSn 2- /Sni 2+ Frenkel pairs, reducing the deep carrier trapping centers associated with such defect and increasing the radiative recombination. Importantly, these observations can be traced in the open-circuit voltage dynamics of tin-based halide perovskite solar cells, implying the relevance of controlling the Sn photochemistry to stabilize tin perovskite devices.

15.
Mater Horiz ; 9(6): 1763-1773, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35510702

RESUMO

Tin halide perovskites have recently emerged as promising materials for low band gap solar cells. Much effort has been invested on controlling the limiting factors responsible for poor device efficiencies, namely self-p-doping and tin oxidation. Both phenomena are related to the presence of defects; however, full understanding of their implications in the optoelectronic properties of the material is still missing. We provide a comprehensive picture of the competing radiative and non-radiative recombination processes in tin-based perovskite thin films to establish the interplay between doping and trapping by combining photoluminescence measurements with trapped-carrier dynamic simulations and first-principles calculations. We show that pristine Sn perovskites, i.e. sample processed with commercially available SnI2 used as received, exhibit extremely high radiative efficiency due to electronic doping which boosts the radiative band-to-band recombination. Contrarily, thin films where Sn4+ species are intentionally introduced show drastically reduced radiative lifetime and efficiency due to a dominance of Auger recombination at all excitation densities when the material is highly doped. The introduction of SnF2 reduces the doping and passivates Sn4+ trap states but conversely introduces additional non-radiative decay channels in the bulk that fundamentally limit the radiative efficiency. Overall, we provide a qualitative model that takes into account different types of traps present in tin-perovskite thin films and show how doping and defects can affect the optoelectronic properties.

16.
ACS Appl Mater Interfaces ; 14(18): 20848-20855, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35476422

RESUMO

Defect passivation has become essential in improving efficiency and stability in perovskite solar cells. Here, we report the use of (α-methylguanido)acetic acid, also known as creatine, as a passivation molecule. It is employed both as an additive and as a surface passivation layer of perovskite thin films, given its multiple functional groups, which could address different defect sites, and its size, which could inherently affect the material structure. We prove that the surface passivation is more efficiently working by removing vulnerable defects on the surface. Hole and electron defect densities were reduced, leading to the highest power conversion efficiency of 22.6%. In addition, it can effectively protect the perovskite thin film and improve the operational stabilities in high thermal (85 °C) and humid conditions (50% relative humidity), suggesting a strong stability of the surface passivation layer.

17.
ACS Appl Mater Interfaces ; 14(30): 34180-34188, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34585916

RESUMO

The instability of halide perovskites toward moisture is one of the main challenges in the field that needs to be overcome to successfully integrate these materials in commercially viable technologies. One of the most popular ways to ensure device stability is to form 2D/3D interfaces by using bulky organic molecules on top of the 3D perovskite thin film. Despite its promise, it is unclear whether this approach is able to avoid 3D bulk degradation under accelerated aging conditions, i.e., thermal stress and light soaking. In this regard, it is crucial to know whether the interface is structurally and electronically stable or not. In this work, we use the bulky phenethylammonium cation (PEA+) to form 2D layers on top of 3D single- and triple-cation halide perovskite films. The dynamical change of the 2D/3D interface is monitored under thermal stress and light soaking by in situ photoluminescence. We find that under pristine conditions the large organic cation diffuses only in 3D perovskite thin films of poor structural stability, i.e., single-cation MAPbI3. The same diffusion and a dynamical change of the crystalline structure of the 2D/3D interface are observed even on high-quality 3D films, i.e., triple-cation MAFACsPbI3, upon thermal stress at 85 °C and light soaking. Importantly, under such conditions, the resistance of the thin film to moisture is lost.

18.
ACS Appl Energy Mater ; 4(10): 10603-10609, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34723138

RESUMO

Charge transport in three-dimensional metal-halide perovskite semiconductors is due to a complex combination of ionic and electronic contributions, and its study is particularly relevant in light of their successful applications in photovoltaics as well as other opto- and microelectronic applications. Interestingly, the observation of field effect at room temperature in transistors based on solution-processed, polycrystalline, three-dimensional perovskite thin films has been elusive. In this work, we study the time-dependent electrical characteristics of field-effect transistors based on the model methylammonium lead iodide semiconductor and observe the drastic variations in output current, and therefore of apparent charge carrier mobility, as a function of the applied gate pulse duration. We infer this behavior to the accumulation of ions at the grain boundaries, which hamper the transport of carriers across the FET channel. This study reveals the dynamic nature of the field effect in solution-processed metal-halide perovskites and offers an investigation methodology useful to characterize charge carrier transport in such emerging semiconductors.

19.
iScience ; 24(5): 102463, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34027321

RESUMO

Promoting solar fuels as a viable alternative to hydrocarbons calls for technologies that couple efficiency, durability, and low cost. In this work we elucidate how hybrid organic-inorganic systems employing hybrid photocathodes (HPC) and perovskite solar cells (PSC) could eventually match these needs, enabling sustainable and clean hydrogen production. First, we demonstrate a system comprising an HPC, a PSC, and a Ru-based oxygen evolution catalyst reaching a solar-to-hydrogen (STH) efficiency above 2%. Moving from this experimental result, we elaborate a perspective for this technology by adapting the existing models to the specific case of an HPC-PSC tandem. We found two very promising scenarios: one with a 10% STH efficiency, achievable using the currently available semiconducting polymers and the widely used methylammonium lead iodide (MAPI) PSC, and the other one with a 20% STH efficiency, requiring dedicated development for water-splitting applications of recently reported high-performing organic semiconductors and narrow band-gap perovskites.

20.
Chem Mater ; 33(7): 2289-2297, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33867665

RESUMO

Metal halide perovskites are attracting great interest for the fabrication of light-emitting devices encompassing light-emitting diodes, lasers, and scintillators. As the field develops, perovskite doping emerges as a promising way to enrich the material functionalities and enhance the luminescence yield and tunability. While Mn+2 addition has been well explored, doping with lanthanides has received less attention, even though their intense and line-like luminescence is interesting for a wide range of applications. In this work, we study the doping of NMA2PbBr4 layered perovskites with Eu3+ and Eu3+ tetrakis ß-diketonate complex. By exploiting the antenna effect of the naphthalene-based functional cation (NMA = 1-naphtylmethylammonium), direct sensitization of Eu3+ is obtained; nevertheless, it is not very efficient due to the non-optimal energy level alignment with the resonance acceptor level of the lanthanide. Protection of Eu3+ in the form of tetrakis ß-diketonate complex grants a more ideal coordination geometry and energetic landscape for the energy transfer to europium in the perovskite matrix, allowing for a nearly 30-fold improvement in luminescence yield. This work sets the basis for new synthetic strategies for the design of functional perovskite/lanthanide host-guest systems with improved luminescence properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA