Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(13): e2400043, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38613338

RESUMO

The compressibility of soft colloids influences their phase behavior and flow properties, especially in concentrated suspensions. Particle compressibility, which is proportional to the reciprocal of the bulk modulus K, is a key parameter for soft polymer-based particles that can be compressed in crowded environments. Here, microgels with different degrees of cross-linking, i.e., softness, are investigated below and above their volume phase transition temperature (VPTT). By combining molecular dynamics simulations with small-angle neutron scattering with contrast variation, a change in the particle bulk moduli of two orders of magnitude is observed. The degree of cross-linking has a significant impact on the bulk modulus of the swollen microgel, while above the VPTT the values of K are almost independent of the cross-linking density. The excellent agreement between experimental results and simulations also highlight that the model microgels from computer simulations possess both the internal architecture and the elastic properties of real polymeric networks. This paves the way to a systematic use of simulations to investigate the behavior of dense microgel suspensions below and above their VPTT.


Assuntos
Microgéis , Simulação de Dinâmica Molecular , Transição de Fase , Microgéis/química , Polímeros/química , Espalhamento a Baixo Ângulo , Géis/química
2.
ACS Nano ; 18(10): 7546-7557, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38417118

RESUMO

Microgels are commonly applied as solute carriers, where the size, density, and functionality of the microgels depend on solute binding. As representatives for ionic solutes with high affinity for the microgel, we study here the effect of superchaotropic Keggin polyoxometalates (POMs) PW12O403- (PW) and SiW12O404- (SiW) on the aqueous swelling and internal structure of nonionic poly(N-isopropylacrylamide) (pNiPAM) microgels by light scattering techniques and small-angle X-ray scattering. Due to their weak hydration, these POMs bind spontaneously to the microgels at millimolar concentrations. The microgels thus become charged and swell at low POM concentration, surprisingly without strongly increasing the volume phase transition temperature, and deswell at higher POM concentration. The swelling arises because of the osmotic pressure of dissociated counterions of the POMs, while the deswelling is due to POMs acting as physical cross-links in the microgels under screened electrostatics in NaCl or excess POM solution. This swelling/deswelling transition is sharper for PW than for SiW related to the lower charge density, weaker hydration, and stronger binding of PW. The POMs elicit qualitatively and quantitatively different swelling effects from ionic surfactants and classical salts. Moreover, the network softness and topology govern the swelling response upon POM binding. The softer the microgel, the stronger is the swelling response, while, inside the microgel, regions of high polymer density swell/contract more upon electric charging/cross-linking than regions with low polymer density. POM binding thus enables fine-tuning of microgel properties and highlights the role of network topology in microgel swelling. Because POMs decompose at an alkaline pH, these POM/microgel systems also exhibit pH-responsive swelling in addition to the typical temperature responsiveness of pNiPAM microgels.

3.
Langmuir ; 39(22): 7530-7538, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37220302

RESUMO

The softness of microgels depends on many aspects, such as particle characteristic lengths, sample concentration, chemical composition of the sample, and elastic moduli of the particle. Here, the response to crowding of ionic microgels is studied. Charged and uncharged ionic microgels are studied in concentrated suspensions of both neutral and ionic microgels with the same swollen size. The combination of small-angle X-ray and neutron scattering with contrast variation allows us to probe both the particle-to-particle arrangement and the response of individual ionic microgels to crowding. When the ionic microgels are uncharged, initial isotropic deswelling followed by faceting is observed. Therefore, the ionizable groups in the polymeric network do not affect the response of the ionic microgel to crowding, which is similar to what has been reported for neutral microgels. In contrast, the kind of microgels composing the matrix plays a key role once the ionic microgels are charged. If the matrix is composed of neutral microgels, a pronounced faceting and negligible deswelling is observed. When only charged ionic microgels are present in the suspension, isotropic deswelling without faceting is dominant.

4.
Phys Chem Chem Phys ; 25(4): 2810-2820, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36052753

RESUMO

Micro- and nanogels are widely used to stabilise emulsions and simultaneously implement their responsiveness to the external stimuli. One of the factors that improves the emulsion stability is the nanogel softness. Here, we study how the softest nanogels that can be synthesised with precipitation polymerisation of N-isopropylacrylamide (NIPAM), the ultra-low crosslinked (ULC) nanogels, stabilise oil-in-water emulsions. We show that ULC nanogels can efficiently stabilise emulsions already at low mass concentrations. These emulsions are resistant to droplet flocculation, stable against coalescence, and can be easily broken upon an increase in temperature. The resistance to flocculation of the ULC-stabilised emulsion droplets is similar to the one of emulsions stabilised by linear pNIPAM. In contrast, the stability against coalescence and the temperature-responsiveness closely resemble those of emulsions stabilised by regularly crosslinked pNIPAM nanogels. The reason for this combination of properties is that ULC nanogels can be thought of as colloids in between flexible macromolecules and particles. As a polymer, ULC nanogels can efficiently stretch at the interface and cover it uniformly. As a regularly crosslinked nanogel particle, ULC nanogels protect emulsion droplets against coalescence by providing a steric barrier and rapidly respond to changes in external stimuli thus breaking the emulsion. This polymer-particle duality of ULC nanogels can be exploited to improve the properties of emulsions for various applications, for example in heterogeneous catalysis or in food science.

5.
Soft Matter ; 18(31): 5750-5758, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35899831

RESUMO

The softness of an object can be quantified by one of the fundamental elastic moduli. The bulk modulus of the particle is most appropriate in the presence of isotropic compressions. Here, we use small-angle neutron scattering with contrast variation to directly access the bulk modulus of polymeric nanocapsules - pNIPAM-based hollow nanogels. We show that the size of the cavity is the most important quantity that determines the softness of hollow nanogels. During initial compression, the polymer collapses into the cavity and leads to a large change in the particle volume, resulting in a very small initial bulk modulus. Once the cavity is partially occupied by the polymer, the hollow nanogels become significantly stiffer since now the highly crosslinked network has to be compressed. Furthermore, we show that the larger the cavity, the softer the nanogel.

6.
Polymers (Basel) ; 13(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34577959

RESUMO

High-pressure electron paramagnetic resonance (EPR) was used to measure translational diffusion coefficients (Dtr) of a TEMPONE spin probe in poly(D,L-lactide) (PDLLA) and swollen in supercritical CO2. Dtr was measured on two scales: macroscopic scale (>1 µm), by measuring spin probe uptake by the sample; and microscopic scale (<10 nm), by using concentration-dependent spectrum broadening. Both methods yield similar translational diffusion coefficients (in the range 5-10 × 10-12 m2/s at 40-60 °C and 8-10 MPa). Swollen PDLLA was found to be homogeneous on the nanometer scale, although the TEMPONE spin probe in the polymer exhibited higher rotational mobility (τcorr = 6 × 10-11 s) than expected, based on its Dtr. To measure distribution coefficients of the solute between the swollen polymer and the supercritical medium, supercritical chromatography with sampling directly from the high-pressure vessel was used. A distinct difference between powder and bulk polymer samples was only observed at the start of the impregnation process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA