Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 29(21): 33380-33397, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809151

RESUMO

Mesoscopic Photonic Crystals (MPhCs) are composed of alternating natural or artificial materials with compensating spatial dispersion. In their simplest form, as presented here, MPhCs are composed by the periodic repetition of a MPhC supercell made of a short slab of bulk material and a short slab of Photonic Crystal (PhCs). Therefore, MPhCs present a multiscale periodicity with a subwavelength periodicity within each PhC slab and with a few-wavelength periodicity for its supercell. Thanks to this mesoscopic structure, MPhCs allow the self-collimation of light, through a mechanism called mesoscopic self-collimation (MSC), along both directions of high symmetry and directions oblique with respect to the MPhCs slab interfaces. Here, we propose a new design method useful for conceiving MPhCs that allow MSC under oblique incidence, avoiding in-plane scattering and ensuring propagation via purely guided modes, without out-of-plane radiation losses. In addition, the proposed method allows a systematic search for optimal MSC structures, which also simultaneously satisfy the impedance matching condition at MPhC interfaces, thus reducing the effect of multiple reflections between bulk-PhC interfaces. The proposed design method has the advantage of an extreme analytical simplicity and it allows direct design of oblique-incidence MPhC structures. Its accuracy is validated through Finite Difference Time Domain simulations and the MSC performances of the designed structures are evaluated, in terms of angular direction, beam waist, overall transmittance, and through discussion of a Figure of Merit that accounts for residual beam curvature. This simple yet powerful method can pave the way for the design of advanced MSC-based photonic interconnects and circuits that are immune to crosstalk and out-of-plane losses.

2.
Opt Express ; 29(20): 31212-31228, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615219

RESUMO

In this paper we report the design of a device allowing on-chip optical wireless interconnections, based on transmitting and receiving Optical Phased Arrays (OPA). The proposed device aims at realizing high-bandwidth and power-efficient reconfigurable connections between multiple nodes, e.g. chiplets stacked onto a common silicon interposer in 2.5D manycore systems. The communication through an optical wireless switch is a completely novel approach to overcome the bottleneck of wired communication and to provide flexibility in the network topology configuration. We report the OPA design criteria as well as the results of three-dimensional Finite Difference Time Domain (FDTD) simulations. We exploit the in-plane radiation of simple taper antennas to implement 1×N and N × N switching matrices. The effect of the multipath propagation in the on-chip multi-layered medium is also taken into account.

3.
Opt Express ; 27(21): 30287-30296, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684278

RESUMO

Self-collimation (SC) and mesoscopic self-collimation (MSC) have been successfully demonstrated along the directions of high symmetry of photonic crystals. Indeed, wide angular acceptances are obtained only in these directions which offer extremely flat isofrequencies. In this article, we numerically demonstrate that mesoscopic self-collimation with large angular acceptance can be achieved along arbitrary directions that are not of high symmetry. In particular, we propose a simple method that allows to easily find all the non-trivial collimation directions and corresponding frequencies. Thanks to the double periodicity of the mesoscopic crystal, these solutions can be effectively tailored in terms of direction and frequency. Moreover, non-trivial MSC solutions can be found well below the light cone. These MSC features open up the possibility of designing complex systems by combining different configurations, such as high reflection (HR) or anti reflection (AR) ones, or active materials.

4.
Opt Express ; 26(23): 30267-30277, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30469902

RESUMO

Optical technology applied to on-chip wireless communication is particularly promising to overcome the performance limitations of the state-of-the-art networks on-chip. A key enabling component for such applications is the plasmonic antenna coupled to conventional silicon waveguides, which can guarantee full compatibility with standard optical circuitry. In this paper, we propose an antenna array configuration based on tilted plasmonic Vivaldi antennas coupled to a silicon waveguide. The details of the single antenna and of the array design are reported. The radiation characteristics of the array are suitable for on-chip point-to-point communication, i.e. in-plane maximum gain of 14.70 dB for an array with five antennas. The array exploits a travelling wave feeding scheme and, therefore, is compact in size (about 3.5 µm × 8.7 µm ).

5.
Opt Express ; 25(14): 16214-16227, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789129

RESUMO

In this paper we propose a novel hybrid optical plasmonic Vivaldi antenna for operation in the standard C telecommunication band for wavelengths in the 1550 nm range. The antenna is fed by a silicon waveguide and is designed to have high gain and large bandwidth. The shape of the radiation pattern, with a main lobe along the antenna axis, makes this antenna suitable for point-to-point connections for inter- or intra-chip optical communications. Direct port-to-port short links for different connection distances and in a homogeneous environment have also been simulated to verify, by comparing the results of a full-wave simulation with the Friis transmission equation, the correctness of the antenna parameters obtained via near-to-far field transformation.

6.
Opt Lett ; 38(1): 46-8, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23282833

RESUMO

We study the coupling mechanism between a high refractive index contrast waveguide and a plasmonic thin-film waveguide in the IR range. We also propose a novel design of a vertical coupler based on loading the plasmonic waveguide with a high refractive index contrast medium on each side. We achieve a coupling efficiency and an insertion loss of about 95% and 0.2 dB, respectively, with a coupling length of only 2.85 µm at the working wavelength of 1.55 µm.

7.
Nanotechnology ; 23(45): 455709, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23089681

RESUMO

In this paper we describe the design, fabrication and characterization of gold nano-patches, deposited on gallium nitride substrate, acting as optical nanoantennas able to efficiently localize the electric field at the metal-dielectric interface. We analyse the performance of the proposed device, evaluating the transmission and the electric field localization by means of a three-dimensional finite difference time domain (FDTD) method. We detail the fabrication protocol and show the morphological characterization. We also investigate the near-field optical transmission by means of scanning near-field optical microscope measurements, which reveal the excitation of a localized surface plasmon resonance at a wavelength of 633 nm, as expected by the FDTD calculations. Such results highlight how the final device can pave the way for the realization of a single optical platform where the active material and the metal nanostructures are integrated together on the same chip.


Assuntos
Gálio/química , Ouro/química , Nanoestruturas/química , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento
8.
Opt Express ; 19(22): 21385-95, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22108988

RESUMO

In this paper we discuss the possibility of implementing a novel bio-sensing platform based on the observation of the shift of the leaky surface plasmon mode that occurs at the edge of the plasmonic band gap of metal gratings, when an analyte is deposited on top of the metallic structure. We report numerical calculations, fabrication and experimental measurements to prove the sensing capability of a two-dimensional array of gold nano-patches in the detection of a small quantity of Isopropyl Alcohol (IPA) deposited on top of sensor surface. The calculated sensitivity of our device approaches a value of 1000 nm/RIU with a corresponding Figure of Merit (FOM) of 222 RIU(-1). The presence of IPA can also be visually estimated by observing a color variation in the diffracted field. We show that color brightness and intensity variations can be ascribed to a change in the aperture size, keeping the periodicity constant, and to different types of analyte deposited on the sample, respectively. Moreover, we demonstrate that unavoidable fabrication imperfections revealed by the presence of rounded corners and surface roughness do not significantly affect device performance.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Ouro/química , Nanoestruturas/química , 2-Propanol/química , Ar , Simulação por Computador , Nanoestruturas/ultraestrutura , Espalhamento de Radiação , Silício/química
9.
Opt Lett ; 36(6): 903-5, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21403723

RESUMO

We report on the formation of plasmonic bandgaps in two-dimensional periodic arrangements of gold patches. Orthogonal arrays of subwavelength slits with different periodicities have been studied by means of a three-dimensional finite-difference time-domain (FDTD) code, changing incident polarization and geometrical parameters. Spectral response of gold patches having different a form factor and surrounded by different media have been also investigated and compared in order to give a full description of bandgap shifts paving the way for the design of polarization-sensitive devices.

10.
Artigo em Inglês | MEDLINE | ID: mdl-21384710

RESUMO

In this paper the design of a handheld light applicator for microwave heating is presented. The applicator is made of an array of resonant longitudinal slots cut on a broad wall of a rectangular waveguide, and it is covered by a cylindrical lens made of Plexiglas with a permittivity of 2.53. The geometrical optics approach is used as initial approximation to establish the lens profile. It allows for the shaping of the slotted waveguide's radiation pattern into a desired output pattern in the transversal plane. Three-dimensional simulation results show that the applicator performance can be improved at 2.45 GHz by using a homogeneous dielectric lens.

11.
Artigo em Inglês | MEDLINE | ID: mdl-19227070

RESUMO

The electromagnetic and thermal analyses of a mode-stirred chamber designed for the heat treatment of antique and precious books are proposed. In particular, the electromagnetic and thermal perturbations due to the presence of metallic insets inside the treated material (paper) are investigated. The temperature measurement results obtained by thermography and by temperature fiber-optic sensor are also reported. Finally, metallic shields are experimentally demonstrated to prevent the overheating of the treated material and the consequent damage of the antique tomes.

12.
Opt Lett ; 32(3): 265-7, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17215940

RESUMO

We study second-harmonic generation in a negative-index material cavity. The transmission spectrum shows a bandgap between the electric and magnetic plasma frequencies. The nonlinear process is made efficient by local phase-matching conditions between a forward-propagating pump and a backward-propagating second-harmonic signal. By simultaneously exciting the cavity with counterpropagating pulses, and by varying their relative phase difference, one is able to enhance or inhibit linear absorption and the second-harmonic conversion efficiency.

13.
Opt Express ; 11(3): 230-9, 2003 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19461728

RESUMO

An optical multiplexer-demultiplexer based on an index-confined photonic band gap waveguide is proposed. The dropping of electromagnetic waves having a given frequency or a certain frequency band is obtained via a phase-shifted grating obtained by breaking the uniform period sequence to include a defect layer. The selective filtering properties of the proposed structure are simulated by means of a computer code relying on a bi-directional beam propagation method based on the method of lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA