Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(6): 1118-1135, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36752534

RESUMO

In temperate regions, climate warming alters temperature and precipitation regimes. During winter, a decline in insulating snow cover changes the soil environment, where especially frost exposure can have severe implications for soil microorganisms and subsequently for soil nutrient dynamics. Here, we investigated winter climate change responses in European beech forests soil microbiome. Nine study sites with each three treatments (snow exclusion, insolation, and ambient) were investigated. Long-term adaptation to average climate was explored by comparing across sites. Triplicated treatment plots were used to evaluate short-term (one single winter) responses. Community profiles of bacteria, archaea and fungi were created using amplicon sequencing. Correlations between the microbiome, vegetation and soil physicochemical properties were found. We identify core members of the forest-microbiome and link them to key processes, for example, mycorrhizal symbiont and specialized beech wood degraders (fungi) and nitrogen cycling (bacteria, archaea). For bacteria, the shift of the microbiome composition due to short-term soil temperature manipulations in winter was similar to the community differences observed between long-term relatively cold to warm conditions. The results suggest a strong link between the changes in the microbiomes and changes in environmental processes, for example, nitrogen dynamics, driven by variations in winter climate.


Assuntos
Fagus , Micorrizas , Ecossistema , Archaea/genética , Solo/química , Florestas , Bactérias/genética , Mudança Climática , Estações do Ano , Neve , Nitrogênio
2.
Appl Environ Microbiol ; 89(1): e0189522, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36622180

RESUMO

A harmful algal bloom occurred in late spring 2019 across multiple, interconnected fjords and bays in northern Norway. The event was caused by the haptophyte Chrysochromulina leadbeateri and led to severe fish mortality at several salmon aquaculture facilities. This study reports on the spatial and temporal succession dynamics of the holistic marine microbiome associated with this bloom by relating all detectable 18S and 16S rRNA gene amplicon sequence variants to the relative abundance of the C. leadbeateri focal taxon. A k-medoid clustering enabled inferences on how the causative focal taxon cobloomed with diverse groups of bacteria and microeukaryotes. These coblooming patterns showed high temporal variability and were distinct between two geographically separated time series stations during the regional harmful algal bloom. The distinct blooming patterns observed with respect to each station were poorly connected to environmental conditions, suggesting that other factors, such as biological interactions, may be at least as important in shaping the dynamics of this type of harmful algal bloom. A deeper understanding of microbiome succession patterns during these rare but destructive events will help guide future efforts to forecast deviations from the natural bloom cycles of the northern Norwegian coastal marine ecosystems that are home to intensive aquaculture activities. IMPORTANCE The 2019 Chrysochromulina leadbeateri bloom in northern Norway had a major impact on the local economy and society through its devastating effect on the aquaculture industry. However, many fail to remember that C. leadbeateri is, in fact, a common member of the seasonal marine microbiome and the same spring phytoplankton blooms that support the marine ecosystem. It is challenging to draw any conclusions about exact causation behind the harmful bloom of 2019, especially since the natural bloom cycles of C. leadbeateri are not well understood. This study begins to fill major knowledge gaps that may lead to future forecasting abilities, by providing a molecular-based investigation of the destructive 2019 bloom that presents new insights into a seasonal marine microbial ecosystem during one of these sporadically reoccurring events.


Assuntos
Dinoflagellida , Haptófitas , Microbiota , Animais , Ecossistema , RNA Ribossômico 16S/genética , Proliferação Nociva de Algas , Fitoplâncton
3.
J Biotechnol ; 360: 171-181, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36417987

RESUMO

Nannochloropsis gaditana is a promising microalga for biotechnology. One of the strategies to stimulate its full potential in metabolite production is exposure to flashing lights. Here, we report how N. gaditana adapts to different flashing light regimes (5, 50, and 500 Hz) by changing its cellular physiology and the relative expression of genes related to critical cellular functions. We analyzed the differential mRNA abundance of genes related to photosynthesis, nitrogen assimilation and biosynthesis of chlorophyll, carotenoids, lipids, fatty acids and starch. Analysis of photosynthetic efficiency and high mRNA abundance of photoprotection genes supported the inference that excess excitation energy provided by light absorbance during photosynthesis was produced under low frequency flashing lights and was dissipated by photopigments via the xanthophyll-cycle. Increased relative expression levels of genes related to the synthesis of carotenoids and chlorophyll confirmed the accumulation of photopigments previously observed at low frequency flashing lights. Higher differential mRNA abundance of genes related to the triacylglycerol biosynthesis were observed at lower frequency flashing lights, possibly triggered by a poor nitrogen assimilation caused by low mRNA abundance of a nitrate reductase gene. This study advances a new understanding of algal physiology and metabolism leading to improved cellular performance and metabolite production.


Assuntos
Biotecnologia , Lipídeos , Lipídeos/genética
4.
ISME J ; 15(9): 2665-2675, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33746204

RESUMO

Trophic interactions are crucial for carbon cycling in food webs. Traditionally, eukaryotic micropredators are considered the major micropredators of bacteria in soils, although bacteria like myxobacteria and Bdellovibrio are also known bacterivores. Until recently, it was impossible to assess the abundance of prokaryotes and eukaryotes in soil food webs simultaneously. Using metatranscriptomic three-domain community profiling we identified pro- and eukaryotic micropredators in 11 European mineral and organic soils from different climes. Myxobacteria comprised 1.5-9.7% of all obtained SSU rRNA transcripts and more than 60% of all identified potential bacterivores in most soils. The name-giving and well-characterized predatory bacteria affiliated with the Myxococcaceae were barely present, while Haliangiaceae and Polyangiaceae dominated. In predation assays, representatives of the latter showed prey spectra as broad as the Myxococcaceae. 18S rRNA transcripts from eukaryotic micropredators, like amoeba and nematodes, were generally less abundant than myxobacterial 16S rRNA transcripts, especially in mineral soils. Although SSU rRNA does not directly reflect organismic abundance, our findings indicate that myxobacteria could be keystone taxa in the soil microbial food web, with potential impact on prokaryotic community composition. Further, they suggest an overlooked, yet ecologically relevant food web module, independent of eukaryotic micropredators and subject to separate environmental and evolutionary pressures.


Assuntos
Cadeia Alimentar , Myxococcales , Animais , Myxococcales/genética , Comportamento Predatório , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
5.
ACS Omega ; 5(24): 14324-14339, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32596570

RESUMO

The green and environmentally friendly synthesis of highly valuable organic substances is one possibility for the utilization of laccases (EC 1.10.3.2). As reactants for the herein described syntheses, different o-substituted arylamines or arylthiols and 2,5-dihydroxybenzoic acid and its derivatives were used. In this way, the formation of phenothiazines, phenoxazines, and phenazines was achieved in aqueous solution mediated by the laccase of Pycnoporus cinnabarinus in the presence of oxygen. Two types of phenothiazines (3-hydroxy- and 3-oxo-phenothiazines) formed in one reaction assay were described for the first time. The cyclization reactions yielded C-N, C-S, or C-O bonds. The syntheses were investigated with regard to the substitution pattern of the reaction partners. Differences in C-S and C-N bond formations without cyclization are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA