Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomaterials ; 28(14): 2264-74, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17296219

RESUMO

Although synthetic biomaterials have a wide range of promising applications in regenerative medicine and tissue engineering, there is limited insight into the basic materials properties that influence cellularisation events. The aim of this study was to investigate the influence of the physical properties of polyester films on the adherence and growth of normal human urothelial and urinary smooth muscle (SM) cells, as part of a programme for the development of potential biomaterials for bladder tissue engineering. Films of different thickness were produced by spin coating from solution. Cell attachment and proliferation were analysed and revealed a reproducible and significant growth advantage over the initial 7 days for both cell types on poly(lactide-co-glycolide) (PLGA) versus poly(epsilon-caprolactone) (PCL), and on thick versus thin films. In order to understand the basis of the variation in cell growth, the surface morphology, degradation behaviour and mechanical properties of the films were investigated. The pattern of cell attachment and growth was found to be unrelated to surface topography and no distinction in film degradation behaviour was found to account for differences in cell growth, except at late time points (14 days), where degradation of thin PLGA films became significant. By contrast, the flexural loss and storage moduli were found to be reduced in films composed of PLGA versus PCL, and also as film thickness increased, indicating that mechanical properties of biomaterials can influence cell growth. We conclude that elastic modulus is relevant to biology at the cellular scale and may also be influential at the tissue/organ level, and is a critical parameter to be considered during development of synthetic biomaterials for tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Caproatos/química , Ácido Láctico/química , Lactonas/química , Músculo Liso/crescimento & desenvolvimento , Ácido Poliglicólico/química , Polímeros/química , Sistema Urogenital/crescimento & desenvolvimento , Fenômenos Biomecânicos , Varredura Diferencial de Calorimetria , Adesão Celular , Contagem de Células , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Imunofluorescência , Humanos , Peso Molecular , Músculo Liso/fisiologia , Músculo Liso/ultraestrutura , Poliésteres/síntese química , Poliésteres/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Engenharia Tecidual , Sistema Urogenital/citologia , Sistema Urogenital/fisiologia , Sistema Urogenital/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA