Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pediatr Pharmacol Ther ; 28(1): 84-92, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777987

RESUMO

OBJECTIVE: To evaluate the physical intravenous Y-site compatibility of 29 combinations of medications at commonly used pediatric concentrations using both existing and novel techniques. METHODS: Medication combinations included were selected by a varied group of pediatric inpatient pharmacists, and then assessed by 3 independent reviewers for existing literature. For each combination, 2 different medications were mixed together in a 1:1 ratio and incubated at room temperature for 4 hours to simulate Y-site administration. Each sample was then analyzed using the US Pharmacopeia (USP) <788> recommended analytical technique of light obscuration (LO) in addition to novel flow imaging (FI) microscopy and backgrounded membrane imaging (BMI). Physical compatibility was determined using USP chapter <788> large volume particle count limits for all techniques. RESULTS: A total of 29 different medication combinations were studied. Five combinations met criteria for compatibility by all 3 techniques. The remaining 24 combinations reached the threshold to be considered incompatible by at least 1 of the 3 techniques. Light obscuration, BMI, and FI identified 14%, 59%, and 76% of combinations as incompatible, respectively. All samples deemed incompatible by LO were also incompatible by at least 1 of the other 2 techniques. Flow imaging and BMI results agreed in 69% of samples tested. CONCLUSIONS: Most combinations tested were found to be incompatible by at least 1 of the 3 instruments used. Light obscuration appears to have reduced accuracy for identifying particulate resulting in physical medication incompatibility when compared with the novel techniques of FI and BMI.

2.
JPEN J Parenter Enteral Nutr ; 47(3): 372-381, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36582024

RESUMO

BACKGROUND: The physical intravenous Y-site compatibility of 15 different medications with highly concentrated neonatal and pediatric parenteral nutrition (PN) compounds is described, using existing and novel methods. METHODS: PN formulations were developed based on common prescribing practices in a 400+-bed freestanding children's hospital. Medications at commonly used pediatric concentrations were mixed in a 1:1 ratio with both pediatric and neonatal PN formulations and incubated at room temperature for 4 h to simulate Y-site administration. Samples were then analyzed using the light obscuration (LO) technique, as recommended by United States Pharmacopeia (USP) chapter 788, in addition to novel flow imaging (FI) microscopy and backgrounded membrane imaging (BMI). Physical compatibility was determined using USP 788 particle count limits for all techniques. RESULTS: Most combinations were found to be compatible per USP 788 thresholds. Pediatric PN was incompatible by at least two methods with cisatracurium 2 mg/ml, sildenafil 0.8 mg/ml, furosemide 10 mg/ml, and ketamine 10 mg/ml. Neonatal PN was incompatible by at least two methods with cisatracurium 2 mg/ml and furosemide 10 mg/ml. Overall, results for 20 of the 30 combinations (66%) agreed across all three methods. FI and BMI results agreed for 22 of 30 combinations. LO agreed with FI in 25 of 30 combinations, and BMI and LO results agreed in 23 of 30 combinations. CONCLUSION: Most combinations tested were found to be compatible across all methods. Novel methods of FI and BMI seem useful to further evaluate LO findings and improve accuracy of particle counts when assessing PN-medication combinations.


Assuntos
Furosemida , Nutrição Parenteral , Recém-Nascido , Criança , Humanos , Nutrição Parenteral/métodos , Preparações Farmacêuticas , Composição de Medicamentos
4.
Am J Health Syst Pharm ; 77(23): 1980-1985, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32974650

RESUMO

PURPOSE: To determine the physical intravenous Y-site compatibility of 19 commonly used medications at pediatric concentrations with 3 different types of lipid emulsion. METHODS: Medications at commonly used pediatric concentrations were mixed in a 1:1 ratio with lipid emulsions (Intralipid, Nutrilipid, and Smoflipid) and incubated at room temperature for 4 hours to simulate Y-site administration. Each sample was then diluted with particle-free water and analyzed using the analytical technique of light obscuration recommended in United States Pharmacopeia (USP) general information chapter 729 (USP <729>). Physical compatibility was determined by measuring the percentage of fat residing in globules larger than 5 µm (PFAT5) per USP <729> recommendations. RESULTS: Most combinations tested were physically compatible based on USP <729> regulations. Incompatibilities differed for the different brands of lipid emulsion. The two combinations that met USP <729> criteria for physical incompatibility were cisatracurium 2 mg/mL with Intralipid and gentamicin 2 mg/mL with Smoflipid. CONCLUSION: Three different lipid emulsions were physically compatible at the Y site with the majority of medications tested. Data regarding Y-site compatibility for one lipid emulsion product cannot be safely extrapolated to another without additional testing.


Assuntos
Emulsões Gordurosas Intravenosas/química , Preparações Farmacêuticas/química , Química Farmacêutica , Incompatibilidade de Medicamentos , Emulsões/química , Óleos de Peixe/química , Humanos , Azeite de Oliva/química , Pediatria , Fosfolipídeos/química , Óleo de Soja/química , Triglicerídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA