Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Cell Endocrinol ; 520: 111092, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33248230

RESUMO

Medullary thyroid carcinoma (MTC) is a rare neuroendocrine neoplasm of the parafollicular thyroid C cells. Although somatostatin receptors are expressed by MTCs, treatment with octreotide has shown poor efficacy, whereas recently pasireotide has demonstrated antiproliferative effects in persistent postoperative MTCs. Aim of this study was to test the effects of octreotide and pasireotide on MTC cells proliferation, cell cycle proteins expression, MAPK activation, apoptosis, calcitonin secretion, migration and invasion in TT cell line as well as in primary MTC cultured cells. Our results showed that both octreotide and pasireotide reduced TT cell proliferation (-35.2 ± 12.1%, p < 0.001, and -25.3 ± 24.8%, p < 0.05, at 10-8 M, respectively), with concomitant inhibition of ERK phosphorylation and cyclin D1 expression. This cytostatic effect was accompanied by a proapoptotic action, with an increase of caspase3/7 activity of 1.5-fold. Moreover, both octreotide and pasireotide inhibited cell migration (-50.9 ± 11.3%, p < 0.01, and -40.5 ± 17%, p < 0.05, respectively) and invasion (-61.3 ± 35.1%, p < 0.05, and -49.7 ± 18%, p < 0.01, respectively). No effect was observed on calcitonin secretion. We then tried to extend these observations to primary cultures (n = 5). Octreotide and/or pasireotide were effective in reducing cells proliferation in 3 out of 5 tumors, and to induce cell apoptosis in 1 out of 3 MTCs. Both octreotide and pasireotide were able to reduce cell migration in all MTC tested. SST2, SST3 and SST5 were expressed in all MTC, with a tendency to increased expression of SST2 in RET mutated vs wild type MTCs. In agreement, inhibition of mutated RET in TT cells reduced SST2 expression. In conclusion, we demonstrated that octreotide and pasireotide inhibited cell proliferation and invasiveness in a subset of MTC, supporting their potential use in the control of tumor growth.


Assuntos
Carcinoma Neuroendócrino/patologia , Octreotida/farmacologia , Somatostatina/análogos & derivados , Neoplasias da Glândula Tireoide/patologia , Apoptose/efeitos dos fármacos , Calcitonina/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Mutação/genética , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-ret/genética , Somatostatina/metabolismo , Somatostatina/farmacologia , Células Tumorais Cultivadas
2.
Cancer Lett ; 497: 77-88, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33075426

RESUMO

Adrenocortical carcinomas (ACCs) overexpress insulin-like growth factor 2 (IGF2), that drives a proliferative autocrine loop by binding to IGF1R and IR, but IGF1R/IR-targeted therapies failed in ACC patients. The cytoskeleton actin-binding protein filamin A (FLNA) impairs IR signalling in melanoma cells. Aims of this study were to test FLNA involvement in regulating IGF1R and IR responsiveness to both IGF2 and inhibitors in ACC. In ACC cells H295R and SW13 and primary cultures (1ACC, 4 adenomas) we found that IGF1R and IR interacted with FLNA, and FLNA silencing increased IGF1R and reduced IR expression, with a downstream effect of increased cell proliferation and ERK phosphorylation. In addition, FLNA knockdown potentiated antiproliferative effects of IGF1R/IR inhibitor Linsitinib and IGF1R inhibitor NVP-ADW742 in H295R. Finally, Western blot showed lower FLNA expression in ACCs (n = 10) than in ACAs (n = 10) and an inverse correlation of FLNA/IGF1R ratio with ERK phosphorylation in ACCs only. In conclusion, we demonstrated that low FLNA levels enhance both IGF2 proliferative effects and IGF1R/IR inhibitors efficacy in ACC cells, suggesting FLNA as a new factor influencing tumor clinical behavior and the response to the therapy with IGF1R/IR-targeted drugs.


Assuntos
Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/patologia , Biomarcadores Tumorais/metabolismo , Filaminas/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor de Insulina/antagonistas & inibidores , Citoesqueleto de Actina/metabolismo , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/metabolismo , Carcinoma Adrenocortical/tratamento farmacológico , Carcinoma Adrenocortical/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Filaminas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imidazóis/farmacologia , Fator de Crescimento Insulin-Like II/genética , Mitógenos/farmacologia , Pirazinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Transdução de Sinais , Células Tumorais Cultivadas
3.
Mol Cell Endocrinol ; 495: 110519, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31352037

RESUMO

Medullary thyroid carcinoma (MTC) is a rare neuroendocrine tumor that originates from parafollicular thyroid C cells and accounts for 5% of thyroid cancers. In inherited cases of MTC, and in about 40% of sporadic cases, activating mutations of the receptor tyrosine kinase proto-oncogene RET are found. Constitutively active RET triggers signaling pathways involved in cell proliferation, survival and motility, but the mechanisms underlying malignant transformation of C-cells have been only partially elucidated. Cofilin is a key regulator of actin cytoskeleton dynamics. A crucial role of cofilin in tumor development, progression, invasion and metastasis has been demonstrated in different human cancers, but no data are available in MTC. Interestingly, RET activation upregulates cofilin gene expression. The aim of this study was to investigate cofilin contribution in invasiveness and growth of MTC cells, and its relevance in the context of mutant RET signaling. We found that cofilin transfection in human MTC cell line TT significantly increased migration (178 ±â€¯44%, p < 0.001), invasion (165 ±â€¯28%, p < 0.01) and proliferation (146 ±â€¯18%, p < 0.001), accompanied by an increase of ERK1/2 phosphorylation (2.23-fold) and cyclin D1 levels (1.43-fold). Accordingly, all these responses were significantly reduced after genetic silencing of cofilin (-55 ±â€¯10% migration, p < 0.001, -41 ±â€¯8% invasion, p < 0.001, -17 ±â€¯3% proliferation, p < 0.001). These results have been confirmed in primary cells cultures obtained from human MTCs. The inhibition of constitutively active RET in TT cells by both the RET pharmacological inhibitor RPI-1 and the transfection of dominant negative RET mutant (RETΔTK) resulted in a reduction of cofilin expression (-37 ±â€¯8%, p < 0.001 and -31 ±â€¯16%, p < 0.01, respectively). Furthermore, RPI-1 inhibitory effects on TT cell migration (-57 ±â€¯13%, p < 0.01), but not on cell proliferation, were completely abolished in cells transfected with cofilin. In conclusion, these data indicate that an unbalanced cofilin expression, induced by oncogenic RET, contributes to promote MTC invasiveness and growth, suggesting the possibility of targeting cofilin pathway for more effective treatment of MTC.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/patologia , Movimento Celular , Proteínas Proto-Oncogênicas c-ret/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Mutação/genética , Invasividade Neoplásica , Inibidores de Proteínas Quinases/farmacologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores
4.
Endocr Relat Cancer ; 26(2): R95-R108, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30589642

RESUMO

Although generally benign, pituitary tumors are frequently locally invasive, with reduced success of neurosurgery and unresponsive to pharmacological treatment with somatostatin or dopamine analogues. The molecular basis of the different biological behavior of pituitary tumors are still poorly identified, but a body of work now suggests that the activity of specific cytoskeleton proteins is a key factor regulating both the invasiveness and drug resistance of these tumors. This review recapitulates the experimental evidence supporting a role for the actin-binding protein filamin A (FLNA) in the regulation of somatostatin and dopamine receptors expression and signaling in pituitary tumors, thus in determining the responsiveness to currently used drugs, somatostatin analogues and dopamine receptor type 2 agonists. Regarding the regulation of invasive behavior of pituitary tumoral cells, we bring evidence to the role of the actin-severing protein cofilin, whose activation status may be modulated by dopaminergic and somatostatinergic drugs, through FLNA involvement. Molecular mechanisms involved in the regulation of FLNA expression and function in pituitary tumors will also be discussed.


Assuntos
Filaminas/metabolismo , Neoplasias Hipofisárias/metabolismo , Animais , Citoesqueleto/metabolismo , Humanos , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/patologia
5.
Cancer Lett ; 435: 101-109, 2018 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-30098401

RESUMO

An efficient intracellular response to somatostatin analogs (SSA) in pituitary tumors requires filamin A (FLNA). Since cAMP pathway plays an important role in GH-secreting pituitary tumors pathogenesis and FLNA is phosphorylated by PKA on S2152, aim of this study was to investigate in tumoral somatotrophs the impact of cAMP pathway activation and SSA stimulation on FLNA phosphorylation and the consequences on SST2 function. We found a PKA-mediated increase (2-fold) and SST2 agonist-induced decrease (-50%) of FLNA phosphorylation in GH3, GH4C1 and primary somatotroph tumor cells. This modification regulates FLNA function. Indeed, phosphomimetic S2152D FLNA mutant, but not phosphodeficient S2152A, abolished the known SSA antitumoral effects, namely: 1) inhibition of cell proliferation, reduction of cyclin D3 and increase of p27; 2) increase of cell apoptosis; 3) inhibition of cell migration via RhoA activation and cofilin phosphorylation. Coimmunoprecipitation and immunofluorescence assays showed that S2152A FLNA was recruited to activated SST2, whereas S2152D FLNA constitutively bound SST2 on the plasma membrane, but prevented Gαi proteins recruitment to SST2. In conclusion, we demonstrated that FLNA phosphorylation, promoted by cAMP pathway activation and inhibited by SSA, prevented SST2 signaling in GH-secreting tumoral pituitary cells.


Assuntos
AMP Cíclico/metabolismo , Filaminas/metabolismo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Neoplasias Hipofisárias/metabolismo , Proteínas Quinases/metabolismo , Receptores de Somatostatina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Adenoma Hipofisário Secretor de Hormônio do Crescimento/genética , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Hormônios/farmacologia , Humanos , Fosforilação/efeitos dos fármacos , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Somatostatina/farmacologia , Somatotrofos/efeitos dos fármacos , Somatotrofos/metabolismo , Células Tumorais Cultivadas
6.
Int J Cancer ; 142(9): 1842-1852, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29226331

RESUMO

The pharmacological therapy of GH-secreting pituitary tumors is based on somatostatin (SS) analogs that reduce GH secretion and cell proliferation by binding mainly SS receptors type 2 (SST2). Antimigratory effects of SS have been demonstrated in different cell models, but no data on pituitary tumors are available. Aims of our study were to evaluate SST2 effects on migration and invasion of human and rat tumoral somatotrophs, and to elucidate the molecular mechanism involved focusing on the role of cofilin and filamin A (FLNA). Our data revealed that SST2 agonist BIM23120 significantly reduced GH3 cells migration (-22% ± 3.6%, p < 0.001) and invasion on collagen IV (-31.3% ± 12.2%, p < 0.01), both these effects being reproduced by octreotide and pasireotide. Similar results were obtained in primary cultured cells from human GH-secreting tumors. These inhibitory actions were accompanied by a marked increase in RhoA/ROCK-dependent cofilin phosphorylation (about 2.7-fold in GH3 and 2.1-fold in human primary cells). Accordingly, the anti-invasive effect of the SS analog was mimicked by the overexpression in GH3 cells of the S3D phosphomimetic cofilin mutant, and abolished by both phosphodeficient S3A cofilin and a specific ROCK inhibitor that prevented cofilin phosphorylation. Moreover, FLNA silencing and FLNA dominant-negative mutants FLNA19-20 and FLNA21-24 transfection demonstrated that FLNA plays a scaffold function for SST2-mediated cofilin phosphorylation. Accordingly, cofilin recruitment to agonist-activated SST2 was completely lost in FLNA silenced cells. In conclusion, we demonstrated that SST2 inhibits rat and human tumoral somatotrophs migration and invasion through a molecular mechanism that involves FLNA-dependent cofilin recruitment and phosphorylation.


Assuntos
Citoesqueleto/metabolismo , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/metabolismo , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/metabolismo , Somatostatina/análogos & derivados , Fatores de Despolimerização de Actina/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Filaminas/metabolismo , Humanos , Invasividade Neoplásica , Fosforilação , Neoplasias Hipofisárias/patologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Somatostatina/farmacologia , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Cancer Lett ; 406: 54-63, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28826686

RESUMO

cAMP pathway plays a major role in the pathogenesis of cortisol-producing adrenocortical adenomas (CPA). cAMP-induced steroidogenesis is preceded by actin cytoskeleton reorganization, a process regulated by cofilin activity. In this study we investigated cofilin role in mediating cAMP effects on cell morphology and steroidogenesis in adrenocortical tumor cells. We demonstrated that forskolin induced cell rounding and strongly reduced phosphorylated (P)-cofilin/total cofilin ratio in Y1 (-52 ± 16%, p < 0.001) and human CPA cells (-53 ± 18%, p < 0.05). Cofilin silencing significantly reduced both forskolin-induced morphological changes and progesterone production (1.3-fold vs 1.8-fold in controls, p < 0.05), whereas transfection of wild-type or S3A (active), but not S3D (inactive) cofilin, potentiated forskolin effects on cell rounding and increased 3-fold progesterone synthesis with respect to control (p < 0.05). Furthermore, cofilin dephosphorylation by a ROCK inhibitor potentiated forskolin-induced cell rounding and steroidogenesis (2-fold increase vs forskolin alone). Finally, we found a reduced P-cofilin/total cofilin ratio and increased cofilin expression in CPA vs endocrine inactive adenomas by western blot and immunohistochemistry. Overall, these results identified cofilin as a mediator of cAMP effects on both morphological changes and steroidogenesis in mouse and human adrenocortical tumor cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Neoplasias do Córtex Suprarrenal/metabolismo , Adenoma Adrenocortical/metabolismo , AMP Cíclico/farmacologia , Esteroides/biossíntese , Fatores de Despolimerização de Actina/antagonistas & inibidores , Fatores de Despolimerização de Actina/genética , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/patologia , Adenoma Adrenocortical/tratamento farmacológico , Adenoma Adrenocortical/patologia , Animais , Colforsina/farmacologia , Humanos , Hidrocortisona/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas , Vasodilatadores/farmacologia
8.
Int J Cancer ; 140(8): 1870-1880, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28120505

RESUMO

The role of progenitor/stem cells in pituitary tumorigenesis, resistance to pharmacological treatments and tumor recurrence is still unclear. This study investigated the presence of progenitor/stem cells in non-functioning pituitary tumors (NFPTs) and tested the efficacy of dopamine receptor type 2 (DRD2) and somatostatin receptor type 2 (SSTR2) agonists to inhibit in vitro proliferation. They found that 70% of 46 NFPTs formed spheres co-expressing stem cell markers, transcription factors (DAX1, SF1, ERG1) and gonadotropins. Analysis of tumor behavior showed that spheres formation was associated with tumor invasiveness (OR = 3,96; IC: 1.05-14.88, p = 0.036). The in vitro reduction of cell proliferation by DRD2 and SSTR2 agonists (31 ± 17% and 35 ± 13% inhibition, respectively, p < 0.01 vs. basal) occurring in about a half of NFPTs cells was conserved in the corresponding spheres. Accordingly, these drugs increased cyclin-dependent kinase inhibitor p27 and decreased cyclin D3 expression in spheres. In conclusion, they provided further evidence for the existence of cells with a progenitor/stem cells-like phenotype in the majority of NFPTs, particularly in those with invasive behavior, and demonstrated that the antiproliferative effects of dopaminergic and somatostatinergic drugs were maintained in progenitor/stem-like cells.


Assuntos
Carcinogênese/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Hipofisárias/tratamento farmacológico , Receptores de Dopamina D2/genética , Receptores de Somatostatina/genética , Adulto , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclina D3/biossíntese , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Receptor Nuclear Órfão DAX-1/biossíntese , Dopaminérgicos/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Canal de Potássio ERG1/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Gonadotropinas/biossíntese , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Fatores de Processamento de RNA/biossíntese , Receptores de Dopamina D2/agonistas , Receptores de Somatostatina/agonistas , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia
10.
Cancer Lett ; 381(2): 279-86, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27519461

RESUMO

Non-functioning pituitary tumors (NFPTs) frequently present local invasiveness. Dopamine receptor 2 (DRD2) agonists are the only medical therapy that induces tumor shrinkage in some patients. Invasion requires cytoskeleton rearrangements that are tightly regulated by cofilin pathway, whose alterations correlate with invasion in different tumors. We investigated the effect of DR2D agonist on NFPT cells migration/invasion and the molecular mechanisms involved. We demonstrated that DRD2 agonist reduced migration (-44 ± 25%, p < 0.01) and invasion (-34 ± 6%, p < 0.001) and increased about 4-fold Ser3-phosphorylated inactive cofilin (P-cofilin) in NFPT cells. These effects were abolished by inhibiting ROCK, a kinase that phosphorylates cofilin. The overexpression of wild-type or phosphodeficient S3A-cofilin increased HP75 cells migration (+49 ± 6% and +57 ± 9% vs empty vector, respectively, p < 0.05), while phosphomimetic mutant had no effect. Interestingly, P-cofilin levels were lower in invasive vs non-invasive tumors by both western blot (mean P-cofilin/total cofilin ratio 0.77 and 1.93, respectively, p < 0.05) and immunohistochemistry (mean percentage of P-cofilin positive cells 17.6 and 45.7, respectively, p < 0.05). In conclusion, we showed that the invasiveness of pituitary tumors is promoted by the activation of cofilin, which can be regulated by DRD2 and might represent a novel biomarker for pituitary tumors' invasive behavior.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Movimento Celular , Neoplasias Hipofisárias/enzimologia , Receptores de Dopamina D2/metabolismo , Quinases Associadas a rho/metabolismo , Fatores de Despolimerização de Actina/genética , Adulto , Idoso , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Fosforilação , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Mutação Puntual , Inibidores de Proteínas Quinases/farmacologia , Receptores de Dopamina D2/agonistas , Transdução de Sinais , Transfecção , Células Tumorais Cultivadas , Quinases Associadas a rho/antagonistas & inibidores
11.
Exp Cell Res ; 339(2): 241-51, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26589262

RESUMO

cAMP effects have been initially attributed to protein kinase A (PKA) activation. Subsequently, two exchange proteins directly activated by cAMP (Epac1/2) have been identified as cAMP targets. Aim of this study was to investigate cAMP effects in pancreatic-NET (P-NET) and bronchial carcinoids and in corresponding cell lines (QGP-1 and H727) on cell proliferation and adhesion and to determine PKA and Epac role in mediating these effects. We found that cAMP increased cyclin D1 expression in P-NET and QGP-1 cells, whereas it had opposite effects on bronchial carcinoids and H727 cells and it promoted cell adhesion in QGP-1 and H727 cells. These effects are mimicked by Epac and PKA specific analogs, activating the small GTPase Rap1. In conclusion, we demonstrated that cAMP exerted divergent effects on proliferation and promoted cell adhesion of different neuroendocrine cell types, these effects being mediated by both Epac and PKA and involving the same effector GTPase Rap1.


Assuntos
Proliferação de Células , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Tumores Neuroendócrinos/metabolismo , Adesão Celular , Humanos , Tumores Neuroendócrinos/patologia , Células Tumorais Cultivadas
12.
Horm Metab Res ; 46(12): 845-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25068602

RESUMO

Molecular mechanisms underlying resistance of pituitary tumors to somatostatin (SS) and dopamine (DA) analogues treatment are not completely understood. Resistance has been associated with defective expression of functional somatostatin and dopamine receptors SSTR2, SSTR5, and DRD2, respectively. Recently, a role of cytoskeleton protein filamin A (FLNA) in DRD2 and SSTR receptors expression and signaling in PRL- and GH-secreting tumors, respectively, has been demonstrated, first revealing a link between FLNA expression and responsiveness of pituitary tumors to pharmacological therapy. No molecular events underlying the reduction of FLNA levels in resistant tumors have been so far identified. FLNA can be phosphorylated by PKA on Ser2152, with increased FLNA resistance to cleavage by calpain and conformational changes affecting FLNA regions involved in SSTR2 and DRD2 binding and signal transduction. In this respect, the effect of cAMP/PKA pathway in the regulation of FLNA stability and/or function by modulating its phosphorylation status could assume particular importance in pituitary, where cAMP cascade plays a crucial role in pituitary cell functions and tumorigenesis. This review will discuss the role of FLNA in the regulation of the main GPCRs target of pharmacological treatment of pituitary tumors, that is, SSTR2 and DRD2, focusing on the effects of cAMP/PKA-mediated FLNA phosphorylation on FLNA biological functions.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Filaminas/metabolismo , Hipófise/metabolismo , Receptores Dopaminérgicos/metabolismo , Somatostatina/metabolismo , Animais , Humanos , Fosforilação
13.
Endocrinology ; 155(8): 2932-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24828612

RESUMO

Somatostatin receptor type 2 (SST2) is the main pharmacological target of medical therapy for GH-secreting pituitary tumors, but molecular mechanisms regulating its expression and signaling are largely unknown. The aim of this study was to investigate the role of cytoskeleton protein filamin A (FLNA) in SST2 expression and signaling in somatotroph tumor cells. We found a highly variable expression of FLNA in human GH-secreting tumors, without a correlation with SST2 levels. FLNA silencing in human tumoral cells did not affect SST2 expression and localization but abolished the SST2-induced reduction of cyclin D1 (-37% ± 15% in control cells, P < .05 vs basal) and caspase-3/7 activation (+63% ± 31% in control cells, P < .05 vs basal). Overexpression of a FLNA dominant-negative mutant that specifically prevents SST2-FLNA binding reduced SST2 expression after prolonged agonist exposure (-55% ± 5%, P < .01 vs untreated cells) in GH3 cells. Moreover, SST2-induced apoptotic effect (77% ± 54% increase of caspase activity, P < .05 vs basal) and SST2-mediated ERK1/2 inhibition (48% ± 17% reduction of ERK1/2 phosphorylation, P < .01 vs basal) were abrogated in cells overexpressing another FLNA mutant that prevents FLNA interaction with partner proteins but not with SST2, suggesting a scaffold function of FLNA in somatotrophs. In conclusion, these data demonstrate that FLNA is involved in SST2 stabilization and signaling in tumoral somatotrophs, playing both a structural and functional role.


Assuntos
Filaminas/fisiologia , Receptores de Somatostatina/fisiologia , Transdução de Sinais/fisiologia , Somatotrofos/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Estabilidade Proteica , Ratos , Receptores de Somatostatina/agonistas
14.
Mol Cell Endocrinol ; 383(1-2): 193-202, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24373949

RESUMO

In the pituitary the activation of cyclic adenosine 3'-5'-monophosphate (cAMP) dependent pathways generates proliferative signals in somatotrophs, whereas in pituitary cells of other lineages its effect remains uncertain. Moreover, the specific role of the two main cAMP effectors, protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac), has not been defined. Aim of this study was to investigate the effect of cAMP on pituitary adenomatous cells proliferation and to identify PKA and Epac differential involvement. We found that cAMP increased DNA synthesis and cyclin D1 expression in somatotropinomas, whereas it reduced both parameters in prolactinomas and nonfunctioning adenomas, these effects being replicated in corresponding cell lines. Moreover, the divergent cAMP effects were mimicked by Epac and PKA analogs, which activated Rap1 and CREB, respectively. In conclusion, we demonstrated that cAMP exerted opposite effects on different pituitary cell types proliferation, these effects being mediated by both Epac and PKA.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , AMP Cíclico/metabolismo , Regulação Neoplásica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Hipófise/metabolismo , Subunidades Proteicas/genética , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Animais , Proliferação de Células , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Gonadotrofos/metabolismo , Gonadotrofos/patologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Lactotrofos/metabolismo , Lactotrofos/patologia , Hipófise/patologia , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Prolactinoma/genética , Prolactinoma/metabolismo , Prolactinoma/patologia , Subunidades Proteicas/metabolismo , Ratos , Transdução de Sinais , Somatotrofos/metabolismo , Somatotrofos/patologia , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
15.
Neuroscience ; 195: 128-37, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21906659

RESUMO

Many data suggest that alpha synuclein (α-syn) aggregation is involved in Parkinson's disease (PD) neurotoxicity and is accelerated by the pathogenetic point mutation A30P. The triplication of α-syn gene has been linked to early-onset familial PD, suggesting that the cellular dosage of α-syn is an important modulator of its toxicity. To verify this point, we developed an inducible model of α-syn expression (both wild type [WT] and mutated A30P) in rat PC12/TetOn cells. At low expression level, both α-syn(WT) and (A30P) did not aggregate, were not toxic, and displayed a protective action against oxidative stress triggered by hydrogen peroxide (H(2)O(2)). By increasing α-syn expression, its antioxidant function was no longer detectable as for the A30P form, but again no aggregation and cell death were present both for the WT and the mutated protein. To clarify why α-syn did not accumulate at high expression level, we inhibited macroautophagy by 3-methyladenine (3-MA) and the proteasome by MG132. In presence of 3-MA, α-syn(WT) accumulated, A11 anti-oligomer antibody-positive aggregates were detectable, and cell toxicity was evident, while proteasome inhibition did not increase α-syn(WT) accumulation. Macroautophagy or proteasome inhibition slightly increased α-syn(A30P) toxicity, with no detectable aggregation. This model can provide useful details about α-syn function, aggregation, and degradation pathways.


Assuntos
Autofagia/genética , Mutação Puntual , Complexo de Endopeptidases do Proteassoma/metabolismo , alfa-Sinucleína/metabolismo , Animais , Western Blotting , Sobrevivência Celular/genética , Humanos , Imuno-Histoquímica , Estresse Oxidativo/genética , Células PC12 , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ratos , alfa-Sinucleína/genética
16.
Eur J Endocrinol ; 161(6): 853-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19755411

RESUMO

BACKGROUND AND AIM: Hypogonadism frequently occurs in men with type 2 diabetes mellitus (T2DM), while the role of glycemic control and visceral obesity is still unclear. This study aimed to assess the Leydig cell function, including the new sensitive marker insulin-like factor 3 (INSL3), in T2DM patients without overt hypogonadism and the influence of either glycemic control or visceral adiposity. SUBJECTS AND METHODS: Thirty T2DM patients (age 57.1+/-6.2 years, body mass index (BMI) 28.0+/-4.3) without overt hypogonadism and 30 age- and BMI-matched controls were studied. Anthropometric, glycometabolic parameters and testosterone, SHBG, LH, INSL3 levels, bioavailable and free testosterone (BT and cFT) were evaluated. The human chorionic gonadotrophin (hCG) test was also performed. RESULTS: Patients had lower total testosterone (452.6+/-130.0 vs 512.6+/-117.3 ng/dl, P=0.06), BT (189.7+/-36.4 vs 237.1+/-94.1 ng/dl, P=0.002), cFT (8.1+/-1.6 vs 10.1+/-4.0 ng/dl, P=0.002), and higher LH levels (3.5+/-1.6 vs 2.6+/-1.2 mU/ml, P=0.01) versus controls. Serum INSL3 concentrations were also lower in patients (1.1+/-0.3 vs 1.5+/-0.7 ng/ml, P=0.01). These hormonal parameters, including INSL3, did not differ between T2DM patients with poor or good glycemic control (HbA1c>9 or <7% respectively). In patients, waist circumferences (97.9+/-12.4 cm) negatively correlated with INSL3 (P=0.03) and basal, as well as hCG-stimulated testosterone levels (P=0.04 and 0.004 respectively). Basal or stimulated hormonal levels and INSL3 concentrations were not different between patients with (40%) or without erectile dysfunction. CONCLUSIONS: An early impairment of the overall Leydig cell function is present in men with T2DM, mainly related to visceral adiposity rather than to glycemic control.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Insulina/sangue , Gordura Intra-Abdominal/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas , Testosterona/sangue
17.
Eur J Endocrinol ; 161(5): 687-94, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19671705

RESUMO

OBJECTIVES: Aberrant cAMP signaling is involved in the pathogenesis of somatotropinomas. The aim of the study was to screen acromegalic patients for the presence of variants of phosphodiesterase type 11A (PDE11A) gene, which have been recently identified in adrenocortical and testicular tumors. SUBJECTS AND METHODS: We sequenced the PDE11A gene-coding region in 78 acromegalic patients and 110 controls. Immunohistochemistry for PDE11A was performed in a subgroup of adenomas and normal pituitary samples. RESULTS: We found 15 nonsynonymous germline substitutions in 13 acromegalic patients (17%), i.e. 14 missense variants (Y727C in six, R804H in one, R867G in four, and M878V in three) and one truncating mutation (FS41X), with a prevalence only slightly higher than that observed in controls (14%). Immunohistochemistry revealed PDE11A expression higher in somatotropinomas than in normal somatotrophs, without significant difference between tumors with or without PDE11A variants, with the exception of two tumors (one with loss of heterozygosity (LOH) at the PDE11A locus and one with FS41X mutation) showing markedly reduced PDE11A staining. No significant differences in hormonal and clinical parameters between patients with or without PDE11A variants were observed, although patients with PDE11A changes showed a tendency to have a more aggressive tumor compared with patients with wild-type sequence (extrasellar extension in 69 vs 45%). CONCLUSIONS: This study first demonstrated the presence of PDE11A variants in a subset of acromegalic patients, which was only slightly more frequent than in controls. The normal expression of the enzyme in the majority of tumor tissues together with the lack of significant clinical phenotype suggests that these variants might only marginally contribute to the development of somatotropinomas.


Assuntos
Acromegalia/enzimologia , Adenoma/enzimologia , Diester Fosfórico Hidrolases/genética , Neoplasias Hipofisárias/enzimologia , 3',5'-GMP Cíclico Fosfodiesterases , Acromegalia/sangue , Acromegalia/genética , Adenoma/sangue , Adenoma/genética , Adulto , Sequência de Bases , DNA de Neoplasias/química , DNA de Neoplasias/genética , Feminino , Variação Genética , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Neoplasias Hipofisárias/sangue , Neoplasias Hipofisárias/genética , Reação em Cadeia da Polimerase , Análise de Regressão
18.
J Endocrinol Invest ; 32(6): 501-4, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19494712

RESUMO

Cardiac myxomas are rare tumors that usually occur as sporadic lesions or,more rarely, in the familial form,mostly in the context of Carney complex (CNC). The molecular basis for the development of cardiac myxomas is unclear. However, somatic activating mutations in the GNAS1 gene (the gsp oncogene) are detected in the myocardium ofMcCune-Albright syndrome patients while germ-line mutations in the PRKAR1A gene are associated with CNC and familial myxomas. We investigated the presence of activating missense mutations in the GNAS1 gene as well as of inactivating mutations in PRKAR1A in 29 sporadically occurring cardiac myxomas. No gsp and no PRKAR1A mutations were found by direct sequencing of PCR products amplified from tumoral DNA. This is the first study including a large series of sporadic, isolated cardiac myxomas and showing that these cardiac neoplasms do not share the same mutations found in familial forms.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Neoplasias Cardíacas/genética , Mutação de Sentido Incorreto , Mixoma/genética , Adulto , Idoso , Western Blotting , Cromograninas , DNA de Neoplasias/química , DNA de Neoplasias/genética , Feminino , Variação Genética , Neoplasias Cardíacas/enzimologia , Neoplasias Cardíacas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mixoma/enzimologia , Mixoma/metabolismo , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
19.
Oncogene ; 27(13): 1834-43, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17906691

RESUMO

The cAMP-protein kinase A (PKA) pathway is the major signal transduction pathway involved in melanocyte-stimulating hormone receptor-mediated signaling and melanin production, whereas its role in the control of melanocyte proliferation is still controversial. In this study, we evaluated the effects of selective activation of the different PKA regulatory subunits type 1A (R1A) and type 2B (R2B) on melanocyte proliferation. Immunohistochemistry demonstrated that normal melanocytes lacked R1A protein whereas this subunit was highly expressed in all human melanomas studied (N=20) and in six human melanoma cell lines. Pharmacological activation of the R2 subunits by the cAMP analogue 8-Cl-cAMP inhibited proliferation and increased caspase-3 activity by 68.77+/-10.5 and 72+/-9% respectively, in all cell lines with the exception of the only p53-mutated one. Similar effects were obtained by activating R2 subunits with other analogues and by silencing R1A expression. The antiproliferative and proapoptotic effects of 8-Cl-cAMP were comparable to those observed with commonly used antitumoral drugs. Moreover, 8-Cl-cAMP potentiated the effects of these drugs on both cell proliferation and caspase-3 activity. In conclusion, this study first reports that human melanomas are characterized by a high R1/R2 ratio and that pharmacological and genetic manipulations able to revert this unbalanced expression cause significant antiproliferative and proapoptotic effects in melanoma cells.


Assuntos
Proliferação de Células , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Melanoma/metabolismo , Adulto , Idoso , Apoptose , Western Blotting , Caspase 3/metabolismo , AMP Cíclico/metabolismo , Humanos , Técnicas Imunoenzimáticas , Melanócitos/metabolismo , Melanoma/patologia , Pessoa de Meia-Idade , Células Tumorais Cultivadas
20.
Exp Cell Res ; 314(1): 123-30, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17904549

RESUMO

The four regulatory subunits (R1A, R1B, R2A, R2B) of protein kinase A (PKA) are differentially expressed in several cancer cell lines and exert distinct roles in growth control. Mutations of the R1A gene have been found in patients with Carney complex and in a minority of sporadic primary pigmented nodular adrenocortical disease (PPNAD). The aim of this study was to evaluate the expression of PKA regulatory subunits in non-PPNAD adrenocortical tumors causing ACTH-independent Cushing's syndrome and to test the impact of differential expression of these subunits on cell growth. Immunohistochemistry demonstrated a defective expression of R2B in all cortisol-secreting adenomas (n=16) compared with the normal counterpart, while both R1A and R2A were expressed at high levels in the same tissues. Conversely, carcinomas (n=5) showed high levels of all subunits. Sequencing of R1A and R2B genes revealed a wild type sequence in all tissues. The effect of R1/R2 ratio on proliferation was assessed in mouse adrenocortical Y-1 cells. The R2-selective cAMP analogue 8-Cl-cAMP dose-dependently inhibited Y-1 cell proliferation and induced apoptosis, while the R1-selective cAMP analogue 8-HA-cAMP stimulated cell proliferation. Finally, R2B gene silencing induced up-regulation of R1A protein, associated with an increase in cell proliferation. In conclusion, we propose that a high R1/R2 ratio favors the proliferation of well differentiated and hormone producing adrenocortical cells, while unbalanced expression of these subunits is not required for malignant transformation.


Assuntos
Neoplasias do Córtex Suprarrenal/enzimologia , Neoplasias do Córtex Suprarrenal/genética , Adenoma Adrenocortical/enzimologia , Adenoma Adrenocortical/genética , Proliferação de Células/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Hidrocortisona/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Neoplasias do Córtex Suprarrenal/metabolismo , Adenoma Adrenocortical/metabolismo , Sequência de Bases/genética , Carcinoma/enzimologia , Carcinoma/genética , Carcinoma/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica/fisiologia , Humanos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA