Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5233, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475387

RESUMO

Measles virus (MeV) is a highly contagious pathogen that enters the human host via the respiratory route. Besides acute pathologies including fever, cough and the characteristic measles rash, the infection of lymphocytes leads to substantial immunosuppression that can exacerbate the outcome of infections with additional pathogens. Despite the availability of effective vaccine prophylaxis, measles outbreaks continue to occur worldwide. We demonstrate that prophylactic and post-exposure therapeutic treatment with an orally bioavailable small-molecule polymerase inhibitor, ERDRP-0519, prevents measles disease in squirrel monkeys (Saimiri sciureus). Treatment initiation at the onset of clinical signs reduced virus shedding, which may support outbreak control. Results show that this clinical candidate has the potential to alleviate clinical measles and augment measles virus eradication.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Sarampo/prevenção & controle , Morfolinas/uso terapêutico , Piperidinas/uso terapêutico , Pirazóis/uso terapêutico , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Animais , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacocinética , Tolerância Imunológica/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Vírus do Sarampo/efeitos dos fármacos , Morfolinas/farmacocinética , Piperidinas/farmacocinética , Pirazóis/farmacocinética , Saimiri , Replicação Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos
2.
mBio ; 10(3)2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088929

RESUMO

Paramyxoviruses and pneumoviruses have similar life cycles and share the respiratory tract as a point of entry. In comparative genome-scale siRNA screens with wild-type-derived measles, mumps, and respiratory syncytial viruses in A549 cells, a human lung adenocarcinoma cell line, we identified vesicular transport, RNA processing pathways, and translation as the top pathways required by all three viruses. As the top hit in the translation pathway, ABCE1, a member of the ATP-binding cassette transporters, was chosen for further study. We found that ABCE1 supports replication of all three viruses, confirming its importance for viruses of both families. More detailed characterization revealed that ABCE1 is specifically required for efficient viral but not general cellular protein synthesis, indicating that paramyxoviral and pneumoviral mRNAs exploit specific translation mechanisms. In addition to providing a novel overview of cellular proteins and pathways that impact these important pathogens, this study highlights the role of ABCE1 as a host factor required for efficient paramyxovirus and pneumovirus translation.IMPORTANCE The Paramyxoviridae and Pneumoviridae families include important human and animal pathogens. To identify common host factors, we performed genome-scale siRNA screens with wild-type-derived measles, mumps, and respiratory syncytial viruses in the same cell line. A comparative bioinformatics analysis yielded different members of the coatomer complex I, translation factors ABCE1 and eIF3A, and several RNA binding proteins as cellular proteins with proviral activity for all three viruses. A more detailed characterization of ABCE1 revealed its essential role for viral protein synthesis. Taken together, these data sets provide new insight into the interactions between paramyxoviruses and pneumoviruses and host cell proteins and constitute a starting point for the development of broadly effective antivirals.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Interações entre Hospedeiro e Microrganismos/genética , Paramyxoviridae/patogenicidade , Pneumovirus/patogenicidade , Células A549 , Biologia Computacional , Expressão Gênica , Humanos , RNA Mensageiro , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética
3.
Adv Virus Res ; 100: 75-98, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29551144

RESUMO

Despite the availability of safe and effective vaccines against measles and several animal morbilliviruses, they continue to cause regular outbreaks and epidemics in susceptible populations. Morbilliviruses are highly contagious and share a similar pathogenesis in their respective hosts. This review provides an overview of morbillivirus history and the general replication cycle and recapitulates Morbillivirus pathogenesis focusing on common and unique aspects seen in different hosts. It also summarizes the state of knowledge regarding virus-host interactions on the cellular level with an emphasis on viral interference with innate immune response activation, and highlights remaining knowledge gaps.


Assuntos
Interações Hospedeiro-Patógeno , Infecções por Morbillivirus/imunologia , Infecções por Morbillivirus/virologia , Morbillivirus/fisiologia , Animais , Humanos , Evasão da Resposta Imune , Morbillivirus/crescimento & desenvolvimento , Morbillivirus/imunologia , Morbillivirus/patogenicidade , Replicação Viral
4.
Vaccine ; 34(44): 5329-5335, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27616472

RESUMO

While seasonal influenza vaccines are usually non-adjuvanted, H1N1pdm09 vaccines were formulated with different squalene-containing adjuvants, to enable the reduction of antigen content thus increasing the number of doses available. To comparatively assess the effects of these adjuvants on antibody responses against matched and mismatched strains, and to correlate antibody levels with protection from disease, ferrets were immunized with 2µg of commercial H1N1pdm09 vaccine antigen alone or formulated with different licensed adjuvants. The use of squalene-containing adjuvants increased neutralizing antibody responses around 100-fold, and resulted in a significantly reduced viral load after challenge with a matched strain. While all animals mounted strong total antibody responses against the homologous H1N1 hemagglutinin (HA) protein, which correlated with the respective neutralizing antibody titers, no reactivity with the divergent H3, H5, H7, and H9 proteins were detected. Only the adjuvanted vaccines also induced antibodies against the neuraminidase (NA) protein, which were able to also recognize NA proteins from other N1 carrying strains. These findings not only support the use of squalene-containing adjuvants in dose-sparing strategies but also support speculations that the induction of NA-specific responses associated with the use of these adjuvants may confer partial protection to heterologous strains carrying the same NA subtype.


Assuntos
Adjuvantes Imunológicos/química , Anticorpos Antivirais/sangue , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Neuraminidase/imunologia , Esqualeno/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/imunologia , Proteção Cruzada , Modelos Animais de Doenças , Furões/imunologia , Humanos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle , Esqualeno/administração & dosagem , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA