Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(25): e2219868120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307449

RESUMO

Flowers have a species-specific fertile period during which pollination and fertilization have to occur to initiate seed and fruit development. Unpollinated flowers remain receptive for mere hours in some species, and up to several weeks in others before flower senescence terminates fertility. As such, floral longevity is a key trait subject to both natural selection and plant breeding. Within the flower, the life span of the ovule containing the female gametophyte is decisive for fertilization and the initiation of seed development. Here, we show that unfertilized ovules in Arabidopsis thaliana undergo a senescence program that generates morphological and molecular hallmarks of canonical programmed cell death processes in the sporophytically derived ovule integuments. Transcriptome profiling of isolated aging ovules revealed substantial transcriptomic reprogramming during ovule senescence, and identified up-regulated transcription factors as candidate regulators of these processes. Combined mutation of three most-up-regulated NAC (NAM, ATAF1/2, and CUC2) transcription factors, NAP/ANAC029, SHYG/ANAC047, and ORE1/ANAC092, caused a substantial delay in ovule senescence and an extension of fertility in Arabidopsis ovules. These results suggest that timing of ovule senescence and duration of gametophyte receptivity are subject to genetic regulation controlled by the maternal sporophyte.


Assuntos
Arabidopsis , Fatores de Transcrição , Óvulo Vegetal , Melhoramento Vegetal , Fertilidade
2.
Curr Opin Plant Biol ; 65: 102119, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34653951

RESUMO

Reverse genetics approaches are routinely used to investigate gene function. However, mutations, especially in critical genes, can lead to pleiotropic effects as severe as lethality, thus limiting functional studies in specific contexts. Approaches that allow for modifications of genes or gene products in a specific spatial or temporal setting can overcome these limitations. The advent of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technologies has not only revolutionized targeted genome modification in plants but also enabled new possibilities for inducible and tissue-specific manipulation of gene functions at the DNA and RNA levels. In addition, novel approaches for the direct manipulation of target proteins have been introduced in plant systems. Here, we review the current development in tissue-specific and conditional manipulation approaches at the DNA, RNA, and protein levels.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA , Desenvolvimento Vegetal/genética , RNA
3.
Plant Cell ; 31(12): 2868-2887, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562216

RESUMO

Detailed functional analyses of many fundamentally important plant genes via conventional loss-of-function approaches are impeded by the severe pleiotropic phenotypes resulting from these losses. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a clustered regularly interspaced short palindromic repeats (CRISPR)-based tissue-specific knockout system, CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs. In Arabidopsis (Arabidopsis thaliana), CRISPR-TSKO mutations in essential genes caused well-defined, localized phenotypes in the root cap, stomatal lineage, or entire lateral roots. The modular cloning system developed in this study allows for the efficient selection, identification, and functional analysis of mutant lines directly in the first transgenic generation. The efficacy of CRISPR-TSKO opens avenues for discovering and analyzing gene functions in the spatial and temporal contexts of plant life while avoiding the pleiotropic effects of system-wide losses of gene function.


Assuntos
Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Clonagem Molecular/métodos , Técnicas de Inativação de Genes/métodos , Mutagênese , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Vetores Genéticos , Especificidade de Órgãos/genética , Fenótipo , Coifa/genética , Raízes de Plantas/genética , Estômatos de Plantas/genética , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA