Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Adv Mater ; 32(9): e1907465, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31958189

RESUMO

Specialized hardware for neural networks requires materials with tunable symmetry, retention, and speed at low power consumption. The study proposes lithium titanates, originally developed as Li-ion battery anode materials, as promising candidates for memristive-based neuromorphic computing hardware. By using ex- and in operando spectroscopy to monitor the lithium filling and emptying of structural positions during electrochemical measurements, the study also investigates the controlled formation of a metallic phase (Li7 Ti5 O12 ) percolating through an insulating medium (Li4 Ti5 O12 ) with no volume changes under voltage bias, thereby controlling the spatially averaged conductivity of the film device. A theoretical model to explain the observed hysteretic switching behavior based on electrochemical nonequilibrium thermodynamics is presented, in which the metal-insulator transition results from electrically driven phase separation of Li4 Ti5 O12 and Li7 Ti5 O12 . Ability of highly lithiated phase of Li7 Ti5 O12 for Deep Neural Network applications is reported, given the large retentions and symmetry, and opportunity for the low lithiated phase of Li4 Ti5 O12 toward Spiking Neural Network applications, due to the shorter retention and large resistance changes. The findings pave the way for lithium oxides to enable thin-film memristive devices with adjustable symmetry and retention.

3.
ACS Appl Mater Interfaces ; 10(51): 44494-44500, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30489061

RESUMO

Using an epitaxial thin-film model system deposited by pulsed laser deposition (PLD), we study the Li-ion conductivity in Li4Ti5O12, a common anode material for Li-ion batteries. Epitaxy, phase purity, and film composition across the film thickness are verified employing out-of-plane and in-plane X-ray diffraction, transmission electron microscopy, time-of-flight mass spectrometry, and elastic recoil detection analysis. We find that epitaxial Li4Ti5O12 behaves like an ideal ionic conductor that is well described by a parallel RC equivalent circuit, with an ionic conductivity of 2.5 × 10-5 S/cm at 230 °C and an activation energy of 0.79 eV in the measured temperature range of 205 to 350 °C. Differently, in a co-deposited polycrystalline Li4Ti5O12 thin film with an average in-plane grain size of <10 nm, a more complex behavior with contributions from two distinct processes is observed. Ultimately, epitaxial Li4Ti5O12 thin films can be grown by PLD and reveal suitable transport properties for further implementation as zero-strain and grain boundary free anodes in future solid-state microbattery designs.

4.
Adv Mater ; 30(44): e1804098, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30238512

RESUMO

In the goal of a sustainable energy future, either the energy efficiency of renewable energy sources is increased, day-to-day energy consumption by smart electronic feedback loops is managed in a more efficient way, or contribution to atmospheric CO2 is reduced. By defining a next generation of fast-response electrochemical CO2 sensors and materials, one can contribute to local monitoring of CO2 flows from industrial plants and processes, for energy management and building control or to track climate alterations. Electrochemical Li+ -garnet-based sensors with Li7 La3 Zr2 O12 solid electrolytes can reach notable 1 min response time at lowered operation temperatures to track 400-4000 ppm levels of CO2 when compared with state-of-the-art NASICON-based sensors. By using principles of redefining the electrode electrochemistry, it is demonstrated that Li6.75 La3 Zr1.75 Ta0.25 O12 can be used to alter its classic use as energy-storage function to gain additional functions such as CO2 tracking.

5.
Adv Mater ; 29(15)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28195367

RESUMO

Ionic heterostructures are used as a strain-modulated memristive device based on the model system Gd0.1 Ce0.9 O2-δ /Er2 O3 to set and tune the property of "memristance." The modulation of interfacial strain and the interface count is used to engineer the Roff /Ron ratio and the persistence of the system. A model describing the variation of mixed ionic-electronic mobilities and defect concentrations is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA