Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med ; 120: 103343, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547546

RESUMO

PURPOSE: Stereotactic radiotherapy (SRT) has transformed cancer treatment, especially for brain metastases. Ensuring accurate SRT delivery is crucial, with the Winston-Lutz test being an important quality control tool. Off-axis Winston-Lutz (OAWL) tests are designed for accuracy assessment, but most are limited to fixed angles and hampered by local-field shifts caused by suboptimal Multi-Leaf Collimator (MLC) positioning. This study introduces a new OAWL approach for quality control in multi-brain-metastasis SRT. Utilizing cine Electronic Portal Imaging Device (EPID) images, it can be used with dynamic conformal arc (DCA) therapy. However, dynamic OAWL (DOAWL) is prone to more local-field shifts due to dynamic MLC movements. A two-step DOAWL is proposed: step 1 calculates local-field shifts using dynamic MLC movements in the beam-eye view data from the Treatment Planning System (TPS), while step 2 processes cine EPID images with an OAWL algorithm to isolate true deviations. METHODS: Validation involved an anthropomorphic head phantom with metallic ball-bearings, Varian TrueBeam STx accelerator delivering six coplanar/non-coplanar DCA beams, cine EPID, and ImageJ's OAWL analysis algorithm. RESULTS: Inherent local-field shifts ranged from 0.11 to 0.49 mm; corrected mean/max EPID-measured displacement was 0.34/1.03 mm. Few points exceeded 0.75/1.0-mm thresholds. CONCLUSIONS: This two-step DOAWL test merges cine-EPID acquisitions, DCA, OAWL, and advanced analysis and offers effective quality control for multi-brain-metastasis SRT. Its routine implementation may also improve physicist knowledge of the treatment precision of their machines.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Humanos , Radioterapia Conformacional/métodos , Diagnóstico por Imagem , Imagens de Fantasmas , Controle de Qualidade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
2.
EJNMMI Phys ; 10(1): 23, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36959483

RESUMO

BACKGROUND: Patient radioprotection in myocardial perfusion imaging (MPI)-SPECT is important but difficult to optimize. The aim of this study was to adjust injected activity according to patient size-weight or BMI-by using a cardiofocal collimator camera. METHODS: The correlation equation between size and observed counts in image was determined in patients who underwent stress Tc-99m-sestamibi MPI-SPECT/CT with a cardiofocal collimator-equipped conventional Anger SPECT/CT system. Image quality analyses by seven nuclear physicians were conducted to determine the minimum patient size-independent observed count threshold that yielded sufficient image quality for perfusion-defect diagnosis. These data generated an equation that can be used to calculate personalized activity for patients according to their size. RESULTS: Analysis of consecutive patients (n = 294) showed that weight correlated with observed counts better than body mass index. The correlation equation was used to generate the equation that expressed the relationship between observed counts, patient weight, and injected activity. Image quality analysis with 50 images yielded an observed count threshold of 22,000 counts. Using this threshold means that the injected activity in patients with < 100 kg would be reduced (e.g., by 67% in 45-kg patients). Patients who are heavier than 100 kg would also benefit from the use of the threshold because although the injected activity would be higher (up to 78% for 150-kg patients), good image quality would be obtained. CONCLUSIONS: This study provided a method for determining the optimal injected activity according to patient weight without compromising the image quality of conventional Anger SPECT/CT systems equipped with a cardiofocal collimator. Personalized injected activities for each patient weight ranging from 45 to 150 kg were generated, to standardize the resulting image quality independently of patient attenuation. This approach improves patient/staff radioprotection because it reduces the injected activity for < 100-kg patients (the majority of patients).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA