Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Biomed Opt ; 29(Suppl 2): S22702, 2025 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38434231

RESUMO

Significance: Advancements in label-free microscopy could provide real-time, non-invasive imaging with unique sources of contrast and automated standardized analysis to characterize heterogeneous and dynamic biological processes. These tools would overcome challenges with widely used methods that are destructive (e.g., histology, flow cytometry) or lack cellular resolution (e.g., plate-based assays, whole animal bioluminescence imaging). Aim: This perspective aims to (1) justify the need for label-free microscopy to track heterogeneous cellular functions over time and space within unperturbed systems and (2) recommend improvements regarding instrumentation, image analysis, and image interpretation to address these needs. Approach: Three key research areas (cancer research, autoimmune disease, and tissue and cell engineering) are considered to support the need for label-free microscopy to characterize heterogeneity and dynamics within biological systems. Based on the strengths (e.g., multiple sources of molecular contrast, non-invasive monitoring) and weaknesses (e.g., imaging depth, image interpretation) of several label-free microscopy modalities, improvements for future imaging systems are recommended. Conclusion: Improvements in instrumentation including strategies that increase resolution and imaging speed, standardization and centralization of image analysis tools, and robust data validation and interpretation will expand the applications of label-free microscopy to study heterogeneous and dynamic biological systems.


Assuntos
Técnicas Histológicas , Microscopia , Animais , Citometria de Fluxo , Processamento de Imagem Assistida por Computador
2.
Mol Ther Methods Clin Dev ; 32(2): 101249, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38699288

RESUMO

Manufacturing chimeric antigen receptor (CAR) T cell therapies is complex, with limited understanding of how medium composition impacts T cell phenotypes. CRISPR-Cas9 ribonucleoproteins can precisely insert a CAR sequence while disrupting the endogenous T cell receptor alpha constant (TRAC) gene resulting in TRAC-CAR T cells with an enriched stem cell memory T cell population, a process that could be further optimized through modifications to the medium composition. In this study we generated anti-GD2 TRAC-CAR T cells using "metabolic priming" (MP), where the cells were activated in glucose/glutamine-low medium and then expanded in glucose/glutamine-high medium. T cell products were evaluated using spectral flow cytometry, metabolic assays, cytokine production, cytotoxicity assays in vitro, and potency against human GD2+ xenograft neuroblastoma models in vivo. Compared with standard TRAC-CAR T cells, MP TRAC-CAR T cells showed less glycolysis, higher CCR7/CD62L expression, more bound NAD(P)H activity, and reduced IFN-γ, IL-2, IP-10, IL-1ß, IL-17, and TGF-ß production at the end of manufacturing ex vivo, with increased central memory CAR T cells and better persistence observed in vivo. MP with medium during CAR T cell biomanufacturing can minimize glycolysis and enrich memory phenotypes ex vivo, which could lead to better responses against solid tumors in vivo.

3.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562720

RESUMO

Manufacturing Chimeric Antigen Receptor (CAR) T cell therapies is complex, with limited understanding of how media composition impact T-cell phenotypes. CRISPR/Cas9 ribonucleoproteins can precisely insert a CAR sequence while disrupting the endogenous T cell receptor alpha constant ( TRAC ) gene resulting in TRAC -CAR T cells with an enriched stem cell memory T-cell population, a process that could be further optimized through modifications to the media composition. In this study we generated anti-GD2 TRAC -CAR T cells using "metabolic priming" (MP), where the cells were activated in glucose/glutamine low media and then expanded in glucose/glutamine high media. T cell products were evaluated using spectral flow cytometry, metabolic assays, cytokine production, cytotoxicity assays in vitro and potency against human GD2+ xenograft neuroblastoma models in vivo . Compared to standard TRAC -CAR T cells, MP TRAC -CAR T cells showed less glycolysis, higher CCR7/CD62L expression, more bound NAD(P)H activity and reduced IFN-γ, IL-2, IP-10, IL-1ß, IL-17, and TGFß production at the end of manufacturing ex vivo , with increased central memory CAR T cells and better persistence observed in vivo . Metabolic priming with media during CAR T cell biomanufacturing can minimize glycolysis and enrich memory phenotypes ex vivo , which could lead to better responses against solid tumors in vivo .

4.
Cancer Med ; 13(8): e7151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38650521

RESUMO

BACKGROUND: Ewing sarcoma (ES) is a malignant bone tumor most commonly affecting non-Hispanic White (NHW) adolescent males, though recognition among Hispanic individuals is rising. Prior population-based studies in the United States (US), utilizing Surveillance, Epidemiology, and End Results (SEER) have shown higher all-cause mortality among White Hispanics, Blacks, and those of low socioeconomic status (SES). Florida is not part of SEER but is home to unique Hispanic populations including Cubans, Puerto Ricans, South Americans that contrasts with the Mexican Hispanic majority in other US states. This study aimed to assess racial/ethnic disparities on incidence and survival outcomes among this diverse Florida patient population. METHODOLOGY: Our study examined all patients diagnosed with osseous ES (2005-2018) in Florida (n = 411) based on the state's population-based cancer registry dataset. Florida Age-adjusted Incidence Rates (AAIRs) were computed by sex and race-ethnicity and compared to the equivalent populations in SEER. Cause-specific survival disparities among Florida patients were examined using Kaplan-Meier analysis. Univariable and multivariable analyses using Cox regression were performed for race/ethnicity, with adjustment for age, sex, year of diagnosis, site of disease, staging, SES, and insurance type. RESULTS: There was a significantly higher incidence of osseous ES in Florida Hispanic males (AAIR 2.6/1,000,000); (95% CI: 2.0-3.2 per 1,000,000; n = 84) compared to the SEER Hispanic males (AAIR 1.2/1,000,000;1.1-1.4 per 1,000,000; n = 382). Older age, distant metastasis, lack of chemotherapy or surgical resection were statistically significant determinants of poor survival while SES, insurance status and race-ethnicity were not. However, among nonmetastatic ES, Florida Hispanics had an increased risk of death compared to Florida NHW (adjusted Hazard Ratio 2.32; 95%CI: 1.20-4.46; p = 0.012). CONCLUSIONS: Florida Hispanic males have a higher-than-expected incidence of osseous ES compared to the US. Hispanics of both sexes show remarkably worse survival for nonmetastatic disease compared to NHW. This disparity is likely multifactorial and requires further in-depth studies.


Assuntos
Sarcoma de Ewing , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/epidemiologia , Neoplasias Ósseas/etnologia , Florida/epidemiologia , Disparidades nos Níveis de Saúde , Hispânico ou Latino/estatística & dados numéricos , Incidência , Sarcoma de Ewing/epidemiologia , Sarcoma de Ewing/etnologia , Sarcoma de Ewing/mortalidade , Programa de SEER
5.
J Chromatogr A ; 1718: 464682, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341900

RESUMO

A novel salt-tolerant cation-exchange membrane, prepared with a multimodal ligand, 2-mercaptopyridine-3-carboxylic acid (MMC-MPCA), was examined for its purification properties in a bind-and-elute mode from the high conductivity supernatant of a Pichia pastoris fermentation producing and secreting a single-chain variable fragment (scFv). If successful, this approach would eliminate the need for a buffer exchange prior to product capture by ion-exchange. Two fed-batch fermentations of Pichia pastoris resulted in fermentation supernatants reaching an scFv titer of 395.0 mg/L and 555.7 mg/L, both with a purity of approximately 83 %. The MMC-MPCA membrane performance was characterized in terms of pH, residence time (RT), scFv load, and scFv concentration to identify the resulting dynamic binding capacity (DBC), yield, and purity achieved under optimal conditions. The MMC-MPCA membrane exhibited the highest DBC of 39.06 mg/mL at pH 5.5, with a residence time of 1 min, while reducing the pH below 5.0 resulted in a significant decrease of the DBC to around 2.5 mg/mL. With almost no diffusional limitations, reducing the RT from 2 to 0.2 min did not negatively impact the DBC of the MMC-MPCA membrane, resulting in a significant improvement in productivity of up to 180 mg/mL/min at 0.2 min RT. Membrane fouling was observed when reusing the membranes at 0.2 and 0.5 min RT, likely due to the enhanced adsorption of impurities on the membrane. Changing the amount of scFv loaded onto the membrane column did not show any changes in yield, instead a 10-20 % loss of scFv was observed, which suggested that some of the produced scFv were fragmented or had aggregated. When performing the purification under the optimized conditions, the resulting purity of the product improved from 83 % to approximately 92-95 %.


Assuntos
Saccharomycetales , Anticorpos de Cadeia Única , Pichia/metabolismo , Saccharomycetales/metabolismo , Fermentação , Proteínas Recombinantes/metabolismo
6.
Mol Biol Rep ; 51(1): 130, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236367

RESUMO

BACKGROUND: Trichobakin (TBK), a member of type I ribosome-inactivating proteins (RIPs), was first successfully cloned from Trichosanthes sp Bac Kan 8-98 in Vietnam. Previous study has shown that TBK acts as a potential protein synthesis inhibitor; however, the inhibition efficiency and specificity of TBK on cancer cells remain to be fully elucidated. METHODS AND RESULTS: In this work, we employed TBK and TBK conjugated with a part of the amino-terminal fragment (ATF) of the urokinase-type plasminogen activator (uPA), which contains the Ω-loop that primarily interacts with urokinase-type plasminogen activator receptor, and can be a powerful carrier in the drug delivery to cancer cells. Four different human tumor cell lines and BALB/c mice bearing Lewis lung carcinoma cells (LLC) were used to evaluate the role of TBK and ATF-TBK in the inhibition of tumor growth. Here we showed that the obtained ligand fused RIP (ATF-TBK) reduced the growth of four human cancer cell lines in vitro in the uPA receptor level-dependent manner, including the breast adenocarcinoma MDA-MB 231 cells and MCF7 cells, the prostate carcinoma LNCaP cells and the hepatocellular carcinoma HepG2 cells. Furthermore, the conjugate showed anti-tumor activity and prolonged the survival time of tumor-bearing mice. The ATF-TBK also did not cause the death of mice with doses up to 48 mg/kg, and they were not significantly distinct on parameters of hematology and serum biochemistry between the control and experiment groups. CONCLUSIONS: In conclusion, ATF-TBK reduced the growth of four different human tumor cell lines and inhibited lung tumor growth in a mouse model with little side effects. Hence, the ATF-TBK may be a target to consider as an anti-cancer agent for clinical trials.


Assuntos
Neoplasias Pulmonares , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Ativador de Plasminogênio Tipo Uroquinase , Sistemas de Liberação de Medicamentos , Linhagem Celular Tumoral
7.
Nat Commun ; 14(1): 7111, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932252

RESUMO

Chromosomal rearrangements can initiate and drive cancer progression, yet it has been challenging to evaluate their impact, especially in genetically heterogeneous solid cancers. To address this problem we developed HiDENSEC, a new computational framework for analyzing chromatin conformation capture in heterogeneous samples that can infer somatic copy number alterations, characterize large-scale chromosomal rearrangements, and estimate cancer cell fractions. After validating HiDENSEC with in silico and in vitro controls, we used it to characterize chromosome-scale evolution during melanoma progression in formalin-fixed tumor samples from three patients. The resulting comprehensive annotation of the genomic events includes copy number neutral translocations that disrupt tumor suppressor genes such as NF1, whole chromosome arm exchanges that result in loss of CDKN2A, and whole-arm copy-number neutral loss of homozygosity involving PTEN. These findings show that large-scale chromosomal rearrangements occur throughout cancer evolution and that characterizing these events yields insights into drivers of melanoma progression.


Assuntos
Aberrações Cromossômicas , Melanoma , Humanos , Variações do Número de Cópias de DNA , Cromossomos , Translocação Genética , Melanoma/genética
8.
Exp Cell Res ; 433(2): 113819, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37852349

RESUMO

Communication between adipocytes and endothelial cells (EC) is suggested to play an important role in the metabolic function of white adipose tissue. In order to generate tools to investigate in detail the physiology and communication of EC and adipocytes, a method for isolation of adipose microvascular EC from visceral adipose tissue (VAT) biopsies of subjects with obesity was developed. Moreover, mature white adipocytes were isolated from the VAT biopsies by a method adapted from a previously published Membrane aggregate adipocytes culture (MAAC) protocol. The identity and functionality of the cultivated and isolated adipose microvascular EC (AMvEC) was validated by imaging their morphology, analyses of mRNA expression, fluorescence activated cell sorting (FACS), immunostaining, low-density lipoprotein (LDL) uptake, and in vitro angiogenesis assays. Finally, we established a new trans filter co-culture system (membrane aggregate adipocyte and endothelial co-culture, MAAECC) for the analysis of communication between the two cell types. EC-adipocyte communication in this system was validated by omics analyses, revealing several altered proteins belonging to pathways such as metabolism, intracellular transport and signal transduction in adipocytes co-cultured with AMvEC. In reverse experiments, induction of several pathways including endothelial development and functions was found in AMvEC co-cultured with adipocytes. In conclusion, we developed a robust method to isolate EC from small quantities of human VAT. Furthermore, the MAAECC system established during the study enables one to study the communication between primary white adipocytes and EC or vice-versa and could also be employed for drug screening.


Assuntos
Adipócitos Brancos , Células Endoteliais , Humanos , Técnicas de Cocultura , Células Endoteliais/metabolismo , Gordura Intra-Abdominal , Tecido Adiposo Branco/metabolismo , Comunicação Celular , Tecido Adiposo
9.
Front Cardiovasc Med ; 10: 1202332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600048

RESUMO

Background: Myocardial injury is a prevalent complication observed in patients hospitalized with COVID-19 and is strongly associated with severe illness and in-hospital mortality. However, the long-term consequences of myocardial injury on clinical outcomes remain poorly understood. This study aimed to assess the impact of myocardial injury on both acute-phase and long-term prognosis in COVID-19 patients. Methods: A retrospective, observational study was conducted on all patients who received treatment at the Intensive Care Center for COVID-19 patient, University Medical Center Ho Chi Minh City (UCICC), from August 3rd, 2021, to October 28th, 2021. Results: A total of 582 patients were enrolled in the study, of which 55.3% were female. The mean age of participants was 63.3 ± 16.2. Out of these patients, 330 cases (56.8%) showed myocardial injury. Compared to patients without myocardial injury, those with myocardial injury were older and had a higher incidence of chronic diseases including hypertension, ischemic heart disease, atrial fibrillation, heart failure, diabetes mellitus, chronic kidney disease. They also presented with more severe respiratory failure upon admission and showed a more pronounced abnormality in inflammation and kidney function tests. Furthermore, the in-hospital mortality rate was significantly higher in the group with myocardial injury (49.7% vs 14.3%, p < 0.001). After adjusting for age, gender, comorbidities, renal function, and disease severity at admission, myocardial injury emerged as an independent risk factor for in-hospital mortality (OR = 3.758, 95% CI 1.854-7.678, p < 0.001). Among successfully discharged COVID-19 patients, the all-cause mortality rate after a median follow-up of 18.4 months was 7.9%. Patients with myocardial injury had a significantly higher long-term mortality rate compared to those without myocardial injury (14.0% vs. 3.2%, p < 0.001). However, multivariable Cox regression analysis did not find myocardial injury to be a significant predictor of long-term mortality (HR = 2.128, 95% CI 0.792-5.712, p = 0.134). Conclusions: Myocardial injury is a common and serious complication in hospitalized COVID-19 patients, associated with increased in-hospital mortality. However, it does not significantly impact long-term mortality in successfully discharged COVID-19 patients.

10.
PeerJ ; 11: e15879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637175

RESUMO

Background: Aquatic plants play a crucial role in nature-based wastewater treatment and provide a promising substrate for renewable energy production using anaerobic digestion (AD) technology. This study aimed to examine the contaminant removal from AD effluent by water lettuce (WL) and produce biogas from WL biomass co-digested with pig dung (PD) in a farm-scale biogas digester. Methods: The first experiment used styrofoam boxes containing husbandry AD effluent. WLs were initially arranged in 50%, 25%, 12.5%, and 0% surface coverage. Each treatment was conducted in five replicates under natural conditions. In the second experiment, WL biomass was co-digested with PD into an existing anaerobic digester to examine biogas production on a farm scale. Results: Over 30 days, the treatment efficiency of TSS, BOD5, COD, TKN, and TP in the effluent was 93.75-97.66%, 76.63-82.56%, 76.78-82.89%, 61.75-63.75%, and 89.00-89.57%, respectively. Higher WL coverage increased the pollutant elimination potential. The WL biomass doubled after 12 days for all treatments. In the farm-scale biogas production, the biogas yield varied between 190.6 and 292.9 L kg VSadded-1. The methane content reached over 54%. Conclusions: WL removed AD effluent nutrients effectively through a phytoremediation system and generated significant biomass for renewable energy production in a farm-scale model.


Assuntos
Araceae , Poluentes Ambientais , Animais , Suínos , Biocombustíveis , Biomassa , Fazendas
11.
Heliyon ; 9(8): e18393, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560705

RESUMO

Background: Stroke is a leading cause of severe disability in the United States, but there is no effective method for patients to accurately detect the signs of stroke at home. We developed a mobile app, Destroke, that allows remote performance of a modified NIH stroke scale (NIHSS) by patients. Aims: To assess the feasibility of a mobile app for stroke monitoring and education by patients with a history of stroke. Materials and methods: We enrolled 25 patients with a history of stroke in a prospective open-label study to evaluate the feasibility of the Destroke app in patients with stroke. Nineteen patients completed all study assessments, with a median time from stroke onset to enrollment of 5.6 years (range 0.1-12 years). We designed a modified NIHSS that assessed 12 out of 16 tasks on the NIHSS. Patients completed this test eight times over a 28-day period. We conducted pre-study surveys that assessed demographic information, stroke and cardiovascular history, baseline NIHSS, and experience using mobile technologies, and mid- and post-study surveys that assessed patient satisfaction on app usage and confidence in stroke detection. Results: Ten men and nine women participated in this study (median age of 64 (33-76)), representing ten US states and Washington D.C. Median baseline NIHSS was 0 (0-4). 15 patients reported using health apps. On a 5-point Likert scale, patients rated the app as 4.2 on being able to understand and use the app and 4.3 on using the app when instructed by their doctor. For eight patients with poor confidence in detecting the signs of a stroke before the study, six showed higher confidence after the study. Conclusions: The use of an at-home stroke monitoring app is feasible by patients with a history of stroke and improves confidence in detecting the signs of stroke.

12.
Funct Integr Genomics ; 23(3): 271, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561192

RESUMO

Rice (Oryza sativa L.) is one of the most important dietary carbohydrate sources for half of the world's population. However, it is not well adapted to environmental stress conditions, necessitating to create new and improved varieties to help ensure sufficient rice production in the face of rising populations and shrinking arable land. Recently, the development of the CRISPR/Cas9 gene editing system has allowed researchers to study functional genomics and engineer new rice varieties with great efficiency compared to conventional methods. In this study, we investigate the involvement of OsGER4, a germin-like protein identified by a genome-wide association study that is associated with rice root development under a stress hormone jasmonic acids treatment. Analysis of the OsGER4 promoter region revealed a series of regulatory elements that connect this gene to ABA signaling and water stress response. Under heat stress, osger4 mutant lines produce a significantly lower crown root than wild-type Kitaake rice. The loss of OsGER4 also led to the reduction of lateral root development. Using the GUS promoter line, OsGER4 expression was detected in the epidermis of the crown root primordial, in the stele of the crown root, and subsequently in the primordial of the lateral root. Taken together, these results illustrated the involvement of OsGER4 in root development under heat stress by regulating auxin transport through plasmodesmata, under control by both ABA and auxin signaling.


Assuntos
Oryza , Oryza/metabolismo , Raízes de Plantas/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resposta ao Choque Térmico/genética , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Artigo em Inglês | MEDLINE | ID: mdl-36642996

RESUMO

Currently approved adoptive T cell therapy relies on autologous (obtained from the same patient) T cells, which often suffer from poor quality that diminishes treatment efficacy. Due to the heterogeneous nature of T cell quality between and within patients, significant efforts are aimed at optimizing cell manipulation and growth conditions for potent T cell products. We believe that touch-free imaging and sensing technologies are critical to monitor single-cell features during T cell manufacturing to ensure consistent and optimally timed methods for cell manipulation and growth. Here, we discuss emerging label-free optical imaging and sensing methods, along with machine learning techniques that could enable in-line feedback to optimize T cell quality at multiple stages during manufacturing. These methods have the potential to streamline current workflow, accelerate the manufacture of safe high-quality T cell therapies, and improve our understanding of the dynamic, heterogeneous processes of T cell manufacturing.

14.
Carbohydr Polym ; 297: 120009, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184136

RESUMO

Cellulose nanocrystals are commonly obtained by acid hydrolysis, particularly with H2SO4. However, a small amount of deposited sulfate-groups contributes to the degradation of their thermal stability. This study prepared thermally-stable and sulfate-group-free cellulose nanospheres (CNSs) from office waste paper by H2SO4 hydrolysis followed by solvolytic desulfation. The optimal desulfation conditions (i.e., 5 wt% MeOH, reaction temperature of 90 °C, a reaction time of 20 min, 0.5 mM pyridine) were preliminarily found from a one-factor-at-a-time experiment and validated by the results of a central composite design. The optimal desulfation conditions promoted environmental sustainability with less pyridine and MeOH and comparably shorter reaction time. The desulfated CNSs had a significant thermal stability enhancement from 186 to 340 °C. Comprehensive characterization of the morphology, chemical composition, and thermal behavior of the desulfated CNSs reconfirmed the complete removal of sulfate groups without harmful pyridine residues, demonstrating the potential use of the thermally stable CNSs.


Assuntos
Celulose , Nanosferas , Celulose/química , Hidrólise , Piridinas , Sulfatos/química , Óxidos de Enxofre
15.
Plant J ; 112(3): 860-874, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36134434

RESUMO

In rice (Oryza sativa L.), crown roots (CRs) have many important roles in processes such as root system expansion, water and mineral uptake, and adaptation to environmental stresses. Phytohormones such as auxin, cytokinin, and ethylene are known to control CR initiation and development in rice. However, the role of jasmonic acid (JA) in CR development remained elusive. Here, we report that JA promotes CR development by regulating OsGER4, a rice Germin-like protein. Root phenotyping analysis revealed that exogenous JA treatment induced an increase in CR number in a concentration-dependent manner. A subsequent genome-wide association study and gene expression analyses pinpointed a strong association between the Germin-like protein OsGER4 and the increase in CR number under exogenous JA treatment. The ProGER4::GUS reporter line showed that OsGER4 is a hormone-responsive gene involved in various stress responses, mainly confined to epidermal and vascular tissues during CR primordia development and to vascular bundles of mature crown and lateral roots. Notable changes in OsGER4 expression patterns caused by the polar auxin transport inhibitor NPA support its connection to auxin signaling. Phenotyping experiments with OsGER4 knockout mutants confirmed that this gene is required for CR development under exogenous JA treatment. Overall, our results provide important insights into JA-mediated regulation of CR development in rice.


Assuntos
Oryza , Oryza/metabolismo , Estudo de Associação Genômica Ampla , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
16.
J Biomater Appl ; 37(5): 872-880, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35786069

RESUMO

Liposomal encapsulation is a drug delivery strategy with many advantages, such as improved bioavailability, ability to carry large drug loads, as well as controllability and specificity towards various targeted diseased tissues. Currently, most preparation techniques require an additional extrusion or filtering step to obtain monodisperse liposomes with the size of less than 100 nm. In this study, a compact liposome extruder was designed at a cost of $4.00 and used to synthesize liposome suspensions with defined particle size and high homogeneity for Murrayafoline A (Mu-A) loading and release. The synthesized MuA-loaded liposomes displayed a biphasic drug release and remained stable under the storage condition of 4°C. They also significantly reduced the viability of HepG2 cells in the cancer spheroids by 25%. The low-cost, flexible liposome extruder would allow the researchers to study liposomes and their applications in a cost-effective manner.


Assuntos
Alcaloides , Neoplasias , Lipossomos , Sistemas de Liberação de Medicamentos , Carbazóis , Tamanho da Partícula , Neoplasias/tratamento farmacológico
17.
Carbohydr Polym ; 288: 119421, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35450616

RESUMO

This study synthesized cellulose-g-poly(acrylic acid) with high water absorbency using the cellulose extracted from pineapple leaves. The synthesis experiment used a novel combination of ethylene glycol dimethacrylate (EGDMA) and azobisisobutyronitrile (AIBN) as the cross-linker and the initiator, respectively. Experimental results showed that the concentrations of AIBN and EGDMA had significant effects on the structure and the water absorbency of the cross-linked materials. The cellulose-g-poly(acrylic acid) synthesized with 0.5 wt% AIBN and 0.5 wt% EGDMA had an excellent swelling capacity of 1900 g/g in distilled water, significantly larger than previously reported ones. Compared with poly(acrylic acid), the cross-linked product demonstrated an absorbency improvement of 1.65 times in distilled water and 1.27 times in 8.6 ppm NaCl solution that was the highest salinity level in Ben Tre, Vietnam, in March 2020. Therefore, the obtained product showed high potential for agricultural applications, especially in coastal regions facing a growing thread of saltwater intrusion.


Assuntos
Ananas , Água , Resinas Acrílicas , Celulose/química , Folhas de Planta , Água/química
18.
Pac Symp Biocomput ; 27: 22-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34890133

RESUMO

There is significant interest in developing machine learning methods to model protein-ligand interactions but a scarcity of experimentally resolved protein-ligand structures to learn from. Protein self-contacts are a much larger source of structural data that could be leveraged, but currently it is not well understood how this data source differs from the target domain. Here, we characterize the 3D geometric patterns of protein self-contacts as probability distributions. We then present a flexible statistical framework to assess the transferability of these patterns to protein-ligand contacts. We observe that the level of transferability from protein self-contacts to protein-ligand contacts depends on contact type, with many contact types exhibiting high transferability. We then demonstrate the potential of leveraging information from these geometric patterns to aid in ligand pose-selection problems in protein-ligand docking. We publicly release our extracted data on geometric interaction patterns to enable further exploration of this problem.


Assuntos
Biologia Computacional , Proteínas , Humanos , Ligantes , Aprendizado de Máquina , Ligação Proteica , Proteínas/metabolismo
19.
J Biomed Opt ; 26(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34628733

RESUMO

SIGNIFICANCE: Deranged metabolism and dysregulated growth factor signaling are closely associated with abnormal levels of proliferation, a recognized hallmark in tumorigenesis. Fluorescence lifetime imaging microscopy (FLIM) of endogenous nicotinamide adenine dinucleotide (NADH), a key metabolic coenzyme, offers a non-invasive, diagnostic indicator of disease progression, and treatment response. The model-independent phasor analysis approach leverages FLIM to rapidly evaluate cancer metabolism in response to targeted therapy. AIM: We combined lifetime and phasor FLIM analysis to evaluate the influence of human epidermal growth factor receptor 2 (HER2) inhibition, a prevalent cancer biomarker, on both nuclear and cytoplasmic NAD(P)H of two squamous cell carcinoma (SCC) cultures. While better established, the standard lifetime analysis approach is relatively slow and potentially subject to intrinsic fitting errors and model assumptions. Phasor FLIM analysis offers a rapid, model-independent alternative, but the sensitivity of the bound NAD(P)H fraction to growth factor signaling must also be firmly established. APPROACH: Two SCC cultures with low- and high-HER2 expression, were imaged using multiphoton-excited NAD(P)H FLIM, with and without treatment of the HER2 inhibitor AG825. Cells were challenged with mitochondrial inhibition and uncoupling to investigate AG825's impact on the overall metabolic capacity. Phasor FLIM and lifetime fitting analyses were compared within nuclear and cytoplasmic compartments to investigate epigenetic and metabolic impacts of HER2 inhibition. RESULTS: NAD(P)H fluorescence lifetime and bound fraction consistently decreased following HER2 inhibition in both cell lines. High-HER2 SCC74B cells displayed a more significant response than low-HER2 SCC74A in both techniques. HER2 inhibition induced greater changes in nuclear than cytoplasmic compartments, leading to an increase in NAD(P)H intensity and concentration. CONCLUSIONS: The use of both, complementary FLIM analysis techniques together with quantitative fluorescence intensity revealed consistent, quantitative changes in NAD(P)H metabolism associated with inhibition of growth factor signaling in SCC cell lines. HER2 inhibition promoted increased reliance on oxidative phosphorylation in both cell lines.


Assuntos
Carcinoma de Células Escamosas , NAD , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/tratamento farmacológico , Epigênese Genética , Humanos , Microscopia de Fluorescência , NAD/metabolismo , Receptor ErbB-2
20.
Genome Res ; 31(10): 1794-1806, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34301624

RESUMO

Direct comparison of bulk gene expression profiles is complicated by distinct cell type mixtures in each sample that obscure whether observed differences are actually caused by changes in the expression levels themselves or are simply a result of differing cell type compositions. Single-cell technology has made it possible to measure gene expression in individual cells, achieving higher resolution at the expense of increased noise. If carefully incorporated, such single-cell data can be used to deconvolve bulk samples to yield accurate estimates of the true cell type proportions, thus enabling one to disentangle the effects of differential expression and cell type mixtures. Here, we propose a generative model and a likelihood-based inference method that uses asymptotic statistical theory and a novel optimization procedure to perform deconvolution of bulk RNA-seq data to produce accurate cell type proportion estimates. We show the effectiveness of our method, called RNA-Sieve, across a diverse array of scenarios involving real data and discuss extensions made uniquely possible by our probabilistic framework, including a demonstration of well-calibrated confidence intervals.


Assuntos
RNA , Transcriptoma , Perfilação da Expressão Gênica/métodos , Funções Verossimilhança , RNA-Seq , Análise de Sequência de RNA , Análise de Célula Única/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA